Normalized Cut Group Clustering of Resting-State fMRI Data

被引:314
作者
van den Heuvel, Martijn [1 ]
Mandl, Rene [1 ]
Pol, Hilleke Hulshoff [1 ]
机构
[1] Univ Med Ctr Utrecht, Dept Psychiat, Rudolf Magnus Inst Neurosci, Utrecht, Netherlands
来源
PLOS ONE | 2008年 / 3卷 / 04期
关键词
D O I
10.1371/journal.pone.0002001
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Functional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest. Regions that show such correlated behavior are said to form resting-state networks (RSNs). RSNs have been investigated using seed-dependent functional connectivity maps and by using a number of model-free methods. However, examining RSNs across a group of subjects is still a complex task and often involves human input in selecting meaningful networks. Methodology/Principal Findings: We report on a voxel based model-free normalized cut graph clustering approach with whole brain coverage for group analysis of resting-state data, in which the number of RSNs is computed as an optimal clustering fit of the data. Inter-voxel correlations of time-series are grouped at the individual level and the consistency of the resulting networks across subjects is clustered at the group level, defining the group RSNs. We scanned a group of 26 subjects at rest with a fast BOLD sensitive fMRI scanning protocol on a 3 Tesla MR scanner. Conclusions/Significance: An optimal group clustering fit revealed 7 RSNs. The 7 RSNs included motor/visual, auditory and attention networks and the frequently reported default mode network. The found RSNs showed large overlap with recently reported resting-state results and support the idea of the formation of spatially distinct RSNs during rest in the human brain.
引用
收藏
页数:11
相关论文
共 50 条
[1]   Investigations into resting-state connectivity using independent component analysis [J].
Beckmann, CF ;
DeLuca, M ;
Devlin, JT ;
Smith, SM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2005, 360 (1457) :1001-1013
[2]   FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI [J].
BISWAL, B ;
YETKIN, FZ ;
HAUGHTON, VM ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :537-541
[3]  
Biswal BB, 1997, NMR BIOMED, V10, P165, DOI 10.1002/(SICI)1099-1492(199706/08)10:4/5<165::AID-NBM454>3.0.CO
[4]  
2-7
[5]   Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients:: Anomalies in the default network [J].
Bluhm, Robyn L. ;
Miller, Jodi ;
Lanius, Ruth A. ;
Osuch, Elizabeth A. ;
Boksman, Kristine ;
Neufeld, R. W. J. ;
Theberge, Jean ;
Schaefer, Betsy ;
Williamson, Peter .
SCHIZOPHRENIA BULLETIN, 2007, 33 (04) :1004-1012
[6]   Unrest at rest: Default activity and spontaneous network correlations [J].
Buckner, Randy L. ;
Vincent, Justin L. .
NEUROIMAGE, 2007, 37 (04) :1091-1096
[7]   Neuronal oscillations in cortical networks [J].
Buzsáki, G ;
Draguhn, A .
SCIENCE, 2004, 304 (5679) :1926-1929
[8]   A method for making group inferences from functional MRI data using independent component analysis [J].
Calhoun, VD ;
Adali, T ;
Pearlson, GD ;
Pekar, JJ .
HUMAN BRAIN MAPPING, 2001, 14 (03) :140-151
[9]   AUTOMATIC 3D INTERSUBJECT REGISTRATION OF MR VOLUMETRIC DATA IN STANDARDIZED TALAIRACH SPACE [J].
COLLINS, DL ;
NEELIN, P ;
PETERS, TM ;
EVANS, AC .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1994, 18 (02) :192-205
[10]   Hierarchical clustering to measure connectivity in fMRI resting-state data [J].
Cordes, D ;
Haughton, V ;
Carew, JD ;
Arfanakis, K ;
Maravilla, K .
MAGNETIC RESONANCE IMAGING, 2002, 20 (04) :305-317