Transfection efficiency and transgene expression kinetics of mRNA delivered in naked and nanoparticle format

被引:132
作者
Phua, Kyle K. L. [1 ]
Leong, Kam W. [1 ,2 ]
Nair, Smita K. [2 ]
机构
[1] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
[2] Duke Univ, Med Ctr, Dept Surg, Durham, NC 27710 USA
关键词
mRNA; Nanoparticle; Kinetics; Non-viral gene therapy; Transfection; Dendritic cell; IN-VITRO; DNA; STABILITY; RESPONSES; CAPACITY; IMMUNITY; CELLS; VIVO;
D O I
10.1016/j.jconrel.2012.12.029
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transfection efficiencies and transgene expression kinetics of messenger RNA (mRNA), an emerging class of nucleic acid-based therapeutics, have been poorly characterized. In this study, we evaluated transfection efficiencies of mRNA delivered in naked and nanoparticle format in vitro and in vivo using GFP and luciferase as reporters. While mRNA nanoparticles transfect primary human and mouse dendritic cells (DCs) efficiently in vitro, naked mRNA could not produce any detectable gene product. The protein expression of nanoparticle-mediated transfection in vitro peaks rapidly within 5-7 h and decays in a biphasic manner. In vivo, naked mRNA is more efficient than mRNA nanoparticles when administered subcutaneously. In contrast, mRNA nanoparticle performs better when administered intranasally and intravenously. Gene expression is most transient when delivered intravenously in nanoparticle format with an apparent half-life of 1.4 h and lasts less than 24 h, and most sustained when delivered in the naked format subcutaneously at the base of tail with an apparent half-life of 18 h and persists for at least 6 days. Notably, exponential decreases in protein expression are consistently observed post-delivery of mRNA in vivo regardless of the mode of delivery (naked or nanoparticle) or the site of administration. This study elucidates the performance of mRNA transfection and suggests a niche for mRNA therapeutics when predictable in vivo transgene expression kinetics is imperative. Published by Elsevier B.V.
引用
收藏
页码:227 / 233
页数:7
相关论文
共 23 条
[1]   Vaccination with mRNA-Electroporated Dendritic Cells Induces Robust Tumor Antigen-Specific CD4+ and CD8+ T Cells Responses in Stage III and IV Melanoma Patients [J].
Aarntzen, Erik H. J. G. ;
Schreibelt, Gerty ;
Bol, Kalijn ;
Lesterhuis, W. Joost ;
Croockewit, Alexandra J. ;
de Wilt, Johannes H. W. ;
van Rossum, Michelle M. ;
Blokx, Willeke A. M. ;
Jacobs, Joannes F. M. ;
Duiveman-de Boer, Tjitske ;
Schuurhuis, Danita H. ;
Mus, Roel ;
Thielemans, Kris ;
de Vries, I. Jolanda M. ;
Figdor, Carl G. ;
Punt, Cornelis J. A. ;
Adema, Gosse J. .
CLINICAL CANCER RESEARCH, 2012, 18 (19) :5460-5470
[2]   Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo [J].
Boczkowski, D ;
Nair, SK ;
Snyder, D ;
Gilboa, E .
JOURNAL OF EXPERIMENTAL MEDICINE, 1996, 184 (02) :465-472
[3]   Multifunctional triblock copolymers for intracellular messenger RNA delivery [J].
Cheng, Connie ;
Convertine, Anthony J. ;
Stayton, Patrick S. ;
Bryers, James D. .
BIOMATERIALS, 2012, 33 (28) :6868-6876
[4]   Lymph node mapping in the mouse [J].
Harrell, Maria I. ;
Iritani, Brian M. ;
Ruddell, Alanna .
JOURNAL OF IMMUNOLOGICAL METHODS, 2008, 332 (1-2) :170-174
[5]   Tuning Physical Properties of Nanocomplexes through Microfluidics-Assisted Confinement [J].
Ho, Yi-Ping ;
Grigsby, Christopher L. ;
Zhao, Feng ;
Leong, Kam W. .
NANO LETTERS, 2011, 11 (05) :2178-2182
[6]   Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells [J].
Holtkamp, Silke ;
Kreiter, Sebastian ;
Selmi, Abderraouf ;
Simon, Petra ;
Koslowski, Michael ;
Huber, Christoph ;
Tureci, Ozlem ;
Sahin, Ugur .
BLOOD, 2006, 108 (13) :4009-4017
[7]   PLGA micro/nanosphere synthesis by droplet microfluidic solvent evaporation and extraction approaches [J].
Hung, Lung-Hsin ;
Teh, Shia-Yen ;
Jester, James ;
Lee, Abraham P. .
LAB ON A CHIP, 2010, 10 (14) :1820-1825
[8]   Incorporation of Pseudouridine Into mRNA Yields Superior Nonimmunogenic Vector With Increased Translational Capacity and Biological Stability [J].
Kariko, Katalin ;
Muramatsu, Hiromi ;
Welsh, Frank A. ;
Ludwig, Janos ;
Kato, Hiroki ;
Akira, Shizuo ;
Weissman, Drew .
MOLECULAR THERAPY, 2008, 16 (11) :1833-1840
[9]   Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo [J].
Kuhn, A. N. ;
Diken, M. ;
Kreiter, S. ;
Selmi, A. ;
Kowalska, J. ;
Jemielity, J. ;
Darzynkiewicz, E. ;
Huber, C. ;
Tureci, O. ;
Sahin, U. .
GENE THERAPY, 2010, 17 (08) :961-971
[10]   Therapeutic siRNA silencing in inflammatory monocytes in mice [J].
Leuschner, Florian ;
Dutta, Partha ;
Gorbatov, Rostic ;
Novobrantseva, Tatiana I. ;
Donahoe, Jessica S. ;
Courties, Gabriel ;
Lee, Kang Mi ;
Kim, James I. ;
Markmann, James F. ;
Marinelli, Brett ;
Panizzi, Peter ;
Lee, Won Woo ;
Iwamoto, Yoshiko ;
Milstein, Stuart ;
Epstein-Barash, Hila ;
Cantley, William ;
Wong, Jamie ;
Cortez-Retamozo, Virna ;
Newton, Andita ;
Love, Kevin ;
Libby, Peter ;
Pittet, Mikael J. ;
Swirski, Filip K. ;
Koteliansky, Victor ;
Langer, Robert ;
Weissleder, Ralph ;
Anderson, Daniel G. ;
Nahrendorf, Matthias .
NATURE BIOTECHNOLOGY, 2011, 29 (11) :1005-U73