Global optimization in Hilbert space

被引:8
作者
Houska, Boris [1 ]
Chachuat, Benoit [2 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol, 319 Yueyang Rd, Shanghai 200031, Peoples R China
[2] Imperial Coll London, Ctr Proc Syst Engn, Dept Chem Engn, South Kensington Campus, London SW7 2AZ, England
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Infinite-dimensional optimization; Complete search; Branch-and-lift; Convergence analysis; Complexity analysis; CONVEX COMPUTATION; APPROXIMATIONS; INTERSECTION; INTEGRATION; ELLIPSOIDS; ALGORITHM; CUT; SET;
D O I
10.1007/s10107-017-1215-7
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a complete-search algorithm for solving a class of non-convex, possibly infinite-dimensional, optimization problems to global optimality. We assume that the optimization variables are in a bounded subset of a Hilbert space, and we determine worst-case run-time bounds for the algorithm under certain regularity conditions of the cost functional and the constraint set. Because these run-time bounds are independent of the number of optimization variables and, in particular, are valid for optimization problems with infinitely many optimization variables, we prove that the algorithm converges to an epsilon-suboptimal global solution within finite run-time for any given termination tolerance epsilon>0. Finally, we illustrate these results for a problem of calculus of variations.
引用
收藏
页码:221 / 249
页数:29
相关论文
共 55 条
[41]  
Nesterov Y., 2000, High performance optimization, P405, DOI DOI 10.1007/978-1-4757-3216-0_17
[42]  
Nesterov Y., 1994, INTERIOR POINT POLYN, DOI DOI 10.1137/1.9781611970791
[43]  
Neumaier A, 2004, ACT NUMERIC, V13, P271, DOI 10.1017/S0962492904000194
[44]  
Neumaier A., 2003, Reliable Computing, V9, P43, DOI 10.1023/A:1023061927787
[45]   Polynomial games and sum of squares optimization [J].
Parrilo, Pablo A. .
PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, :2855-2860
[46]  
Pontryagin L. S., 2018, The mathematical theory of optimal processes
[47]   Chebyshev model arithmetic for factorable functions [J].
Rajyaguru, Jai ;
Villanueva, Mario E. ;
Houska, Boris ;
Chachuat, Benoit .
JOURNAL OF GLOBAL OPTIMIZATION, 2017, 68 (02) :413-438
[48]  
SAFF EB, 1989, J LOND MATH SOC, V39, P487
[49]   BARON: A general purpose global optimization software package [J].
Sahinidis, NV .
JOURNAL OF GLOBAL OPTIMIZATION, 1996, 8 (02) :201-205
[50]   Nonlinear convex and concave relaxations for the solutions of parametric ODEs [J].
Scott, Joseph K. ;
Chachuat, Benoit ;
Barton, Paul I. .
OPTIMAL CONTROL APPLICATIONS & METHODS, 2013, 34 (02) :145-163