Spontaneous formation of circular and vortex ferroelectric domain structure in hexagonal YMnO3 and YMn0.9Fe0.1O3 prepared by low temperature solution synthesis

被引:14
作者
Harunsani, M. H. [1 ]
Li, J. [2 ]
Qin, Y. B. [2 ]
Tian, H. T. [2 ]
Li, J. Q. [2 ]
Yang, H. X. [2 ]
Walton, R. I. [1 ]
机构
[1] Univ Warwick, Dept Chem, Coventry CV4 7AL, W Midlands, England
[2] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
关键词
HYDROTHERMAL SYNTHESIS; PEROVSKITE MANGANITES; MAGNETISM; TOPOLOGY; WALLS;
D O I
10.1063/1.4928565
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report an experimental study of the domain structure of ferroelectric YMnO3 and YMn0.9Fe0.1O3 using polycrystalline samples prepared by direct hydrothermal crystallisation at 240 degrees C, well below their structural phase transition temperatures. Powder X-ray diffraction shows the expected P6(3)cm space group for both samples with an increase in a and a small decrease in c with Fe incorporation, consistent with an adjustment of MnO5 tilting, while XANES spectra at the Mn and Fe K edges show the oxidation state of both metals are maintained at +3 in the doped sample. High resolution TEM shows that curved stripe, annular and vortex domains can all be observed in the YMnO3 crystals, proving that the structural phase transition is not the only driving force for the occurrence of the annular and vortex domains. Furthermore, the absence of the annular and vortex domains in YMn0.9Fe0.1O3 indicates that the tilting state of MnO5 bipyramids plays an important role in the domain formation. Atomic resolution STEM images confirm that the ferroelectric domain walls correspond to structural antiphase boundaries similar to the crystals made via high temperature solid-state reactions. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 35 条
  • [1] Artyukhin S, 2014, NAT MATER, V13, P42, DOI [10.1038/NMAT3786, 10.1038/nmat3786]
  • [2] Direct Observation of the Proliferation of Ferroelectric Loop Domains and Vortex-Antivortex Pairs
    Chae, S. C.
    Lee, N.
    Horibe, Y.
    Tanimura, M.
    Mori, S.
    Gao, B.
    Carr, S.
    Cheong, S. -W.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (16)
  • [3] Thermodynamic assessment of the Mn-Y-O system
    Chen, M
    Hallstedt, B
    Gauckler, LJ
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2005, 393 (1-2) : 114 - 121
  • [4] Choi T, 2010, NAT MATER, V9, P253, DOI [10.1038/NMAT2632, 10.1038/nmat2632]
  • [5] Whole-profile structure solution from powder diffraction data using simulated annealing
    Coelho, AA
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2000, 33 (02) : 899 - 908
  • [6] Bulk magnetoelectricity in the hexagonal manganites and ferrites
    Das, Hena
    Wysocki, Aleksander L.
    Geng, Yanan
    Wu, Weida
    Fennie, Craig J.
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [7] B18: A core XAS spectroscopy beamline for Diamond
    Dent, A. J.
    Cibin, G.
    Ramos, S.
    Smith, A. D.
    Scott, S. M.
    Varandas, L.
    Pearson, M. R.
    Krumpa, N. A.
    Jones, C. P.
    Robbins, P. E.
    [J]. 14TH INTERNATIONAL CONFERENCE ON X-RAY ABSORPTION FINE STRUCTURE (XAFS14), PROCEEDINGS, 2009, 190
  • [8] Collective Magnetism at Multiferroic Vortex Domain Walls
    Geng, Yanan
    Lee, N.
    Choi, Y. J.
    Cheong, S. -W.
    Wu, Weida
    [J]. NANO LETTERS, 2012, 12 (12) : 6055 - 6059
  • [9] Anisotropy of building blocks and their assembly into complex structures
    Glotzer, Sharon C.
    Solomon, Michael J.
    [J]. NATURE MATERIALS, 2007, 6 (08) : 557 - 562
  • [10] Hydrothermal synthesis and magnetic properties of Fe3+-doped multiferroic hexagonal rare-earth manganates
    Guo, Li
    Zhou, Zhiqiang
    Yuan, Hongming
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 616 : 454 - 460