Deep Learning Network Intrusion Detection Based on Network Traffic

被引:4
|
作者
Wang, Hanyang [1 ]
Zhou, Sirui [1 ]
Li, Honglei [1 ]
Hu, Juan [1 ]
Du, Xinran [1 ]
Zhou, Jinghui [2 ]
He, Yunlong [2 ]
Fu, Fa [1 ]
Yang, Houqun [1 ]
机构
[1] Hainan Univ, Haikou 570228, Hainan, Peoples R China
[2] Hainan Century Network Secur Informat Technol Co, Haikou, Hainan, Peoples R China
来源
ARTIFICIAL INTELLIGENCE AND SECURITY, ICAIS 2022, PT III | 2022年 / 13340卷
基金
海南省自然科学基金;
关键词
Intrusion detection; Convolutional neural network; Long-short cycle memory network; DETECTION SYSTEM; MODEL;
D O I
10.1007/978-3-031-06791-4_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Network intrusion detection is an important protection tool after firewall, and intrusion detection algorithm is the core of intrusion detection system. The purpose of studying intrusion detection algorithm is to improve the detection rate of abnormal attacks and reduce the false positive rate. Deep learning is the first mock exam to deal with network data traffic. It does not make full use of the unique characteristics of network data when solving classification problems, and often shows the drawback of not fully summarizing the characteristics and limited generalization ability of specific data sets. The fusion of convolutional neural network and long-term and short-term memory network can fully extract the effective features of intrusion samples by mining the spatio-temporal features of all aspects of network data flow, especially the sequence of feature sequences retained by LSTM, which makes intrusion detection more accurate in classifying normal data and four kinds of abnormal data, Experiments show that CNN-LSTM model is more accurate and has excellent performance on UNSW-NB15 data set and NLS-KDD 99 data set.
引用
收藏
页码:194 / 207
页数:14
相关论文
共 50 条
  • [1] Deep Learning Applications for Intrusion Detection in Network Traffic
    Getman, A. I.
    Rybolovlev, D. A.
    Nikolskaya, A. G.
    PROGRAMMING AND COMPUTER SOFTWARE, 2024, 50 (07) : 493 - 510
  • [2] Intrusion Detection of Imbalanced Network Traffic Based on Machine Learning and Deep Learning
    Liu, Lan
    Wang, Pengcheng
    Lin, Jun
    Liu, Langzhou
    IEEE Access, 2021, 9 : 7550 - 7563
  • [3] Intrusion Detection of Imbalanced Network Traffic Based on Machine Learning and Deep Learning
    Liu, Lan
    Wang, Pengcheng
    Lin, Jun
    Liu, Langzhou
    IEEE ACCESS, 2021, 9 : 7550 - 7563
  • [4] A Network Traffic Intrusion Detection Method for Industrial Control Systems Based on Deep Learning
    Jin, Kai
    Zhang, Lei
    Zhang, Yujie
    Sun, Duo
    Zheng, Xiaoyuan
    ELECTRONICS, 2023, 12 (20)
  • [5] Network intrusion detection methods based on deep learning
    Li X.
    Zhang S.
    Recent Patents on Engineering, 2021, 15 (04):
  • [6] Deep and Machine Learning Approaches for Anomaly-Based Intrusion Detection of Imbalanced Network Traffic
    Abdulhammed, Razan
    Faezipour, Miad
    Abuzneid, Abdelshakour
    AbuMallouh, Arafat
    IEEE SENSORS LETTERS, 2019, 3 (01)
  • [7] Novel Approach Using Deep Learning for Intrusion Detection and Classification of the Network Traffic
    Ahmad, Shahbaz
    Arif, Fahim
    Zabeehullah
    Iltaf, Naima
    2020 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND VIRTUAL ENVIRONMENTS FOR MEASUREMENT SYSTEMS AND APPLICATIONS (CIVEMSA 2020), 2020,
  • [8] Improving Intrusion Detection for Imbalanced Network Traffic using Generative Deep Learning
    Alqarni, Amani A.
    El-Alfy, El-Sayed M.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (04) : 959 - 967
  • [9] Network Intrusion Detection Method Based on Relevance Deep Learning
    Jing, Li
    Bin, Wang
    2016 INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION, BIG DATA & SMART CITY (ICITBS), 2017, : 237 - 240
  • [10] An efficient network intrusion detection approach based on deep learning
    Wang, Zhihao
    Jiang, Dingde
    Huo, Liuwei
    Yang, Wei
    WIRELESS NETWORKS, 2021,