Controlling the growth of epitaxial graphene on metalized diamond (111) surface

被引:16
作者
Cooil, S. P. [1 ,2 ]
Wells, J. W. [2 ]
Hu, D. [1 ]
Niu, Y. R. [3 ]
Zakharov, A. A. [3 ]
Bianchi, M. [4 ,5 ]
Evans, D. A. [1 ]
机构
[1] Aberystwyth Univ, Dept Phys, Aberystwyth SY23 3BZ, Dyfed, Wales
[2] Norwegian Univ Sci & Technol NTNU, Dept Phys, N-7491 Trondheim, Norway
[3] Lund Univ, MAX Lab 4, S-22100 Lund, Sweden
[4] Aarhus Univ, Dept Phys, DK-8000 Aarhus, Denmark
[5] Aarhus Univ, Astron & Interdisciplinary Nanosci Ctr, DK-8000 Aarhus, Denmark
基金
英国工程与自然科学研究理事会;
关键词
CARBON;
D O I
10.1063/1.4935073
中图分类号
O59 [应用物理学];
学科分类号
摘要
The 2-dimensional transformation of the diamond (111) surface to graphene has been demonstrated using ultrathin Fe films that catalytically reduce the reaction temperature needed for the conversion of sp(3) to sp(2) carbon. An epitaxial system is formed, which involves the re-crystallization of carbon at the Fe/vacuum interface and that enables the controlled growth of monolayer and multilayer graphene films. In order to study the initial stages of single and multilayer graphene growth, real time monitoring of the system was preformed within a photoemission and low energy electron microscope. It was found that the initial graphene growth occurred at temperatures as low as 500 degrees C, whilst increasing the temperature to 560 degrees C was required to produce multi-layer graphene of high structural quality. Angle resolved photoelectron spectroscopy was used to study the electronic properties of the grown material, where a graphene-like energy momentum dispersion was observed. The Dirac point for the first layer is located at 2.5 eV below the Fermi level, indicating an n-type doping of the graphene due to substrate interactions, while that of the second graphene layer lies close to the Fermi level. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 33 条
[1]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[2]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[3]   Coherent dynamics of coupled electron and nuclear spin qubits in diamond [J].
Childress, L. ;
Dutt, M. V. Gurudev ;
Taylor, J. M. ;
Zibrov, A. S. ;
Jelezko, F. ;
Wrachtrup, J. ;
Hemmer, P. R. ;
Lukin, M. D. .
SCIENCE, 2006, 314 (5797) :281-285
[4]   Iron-mediated growth of epitaxial graphene on SiC and diamond [J].
Cooil, S. P. ;
Song, F. ;
Williams, G. T. ;
Roberts, O. R. ;
Langstaff, D. P. ;
Jorgensen, B. ;
Hoydalsvik, K. ;
Breiby, D. W. ;
Wahlstrom, E. ;
Evans, D. A. ;
Wells, J. W. .
CARBON, 2012, 50 (14) :5099-5105
[5]   Graphene-based quantum electronics [J].
Dragoman, M. ;
Dragoman, D. .
PROGRESS IN QUANTUM ELECTRONICS, 2009, 33 (06) :165-214
[6]   CHEMICAL NATURE OF ION-BOMBARDED CARBON - PHOTOELECTRON SPECTROSCOPIC STUDY OF CLEANED SURFACES OF DIAMOND AND GRAPHITE [J].
EVANS, S ;
THOMAS, JM .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1977, 353 (1672) :103-120
[7]   Large-area homogeneous quasifree standing epitaxial graphene on SiC(0001): Electronic and structural characterization [J].
Forti, S. ;
Emtsev, K. V. ;
Coletti, C. ;
Zakharov, A. A. ;
Riedl, C. ;
Starke, U. .
PHYSICAL REVIEW B, 2011, 84 (12)
[8]   Epitaxial Graphene on Cu(111) [J].
Gao, Li ;
Guest, Jeffrey R. ;
Guisinger, Nathan P. .
NANO LETTERS, 2010, 10 (09) :3512-3516
[9]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[10]   Doping graphene with metal contacts [J].
Giovannetti, G. ;
Khomyakov, P. A. ;
Brocks, G. ;
Karpan, V. M. ;
van den Brink, J. ;
Kelly, P. J. .
PHYSICAL REVIEW LETTERS, 2008, 101 (02)