Slippage of initial conditions for the Redfield master equation

被引:130
作者
Gaspard, P
Nagaoka, M
机构
[1] Free Univ Brussels, Fac Sci, Serv Chim Phys, B-1050 Brussels, Belgium
[2] Free Univ Brussels, Fac Sci, Ctr Nonlinear Phenomena & Complex Syst, B-1050 Brussels, Belgium
[3] Nagoya Univ, Grad Sch Human Informat, Chikusa Ku, Nagoya, Aichi 4648601, Japan
[4] Inst Fundamental Chem, Sakyo Ku, Kyoto 606, Japan
关键词
D O I
10.1063/1.479867
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For a slow open quantum subsystem weakly coupled to a fast thermal bath, we derive the general form of the slippage to be applied to the initial conditions of the Redfield master equation. This slippage is given by a superoperator which describes the non-Markovian dynamics of the subsystem during the short-time relaxation of the thermal bath. We verify in an example that the Redfield equation preserves positivity after the slippage superoperator has been applied to the initial density matrix of the subsystem. For delta-correlated baths, the Redfield master equation reduces to the Lindblad master equation and the slippage of initial conditions vanishes consistently. (C) 1999 American Institute of Physics. [S0021-9606(99)50137-2].
引用
收藏
页码:5668 / 5675
页数:8
相关论文
共 18 条
  • [1] Alicki R., 2007, Volume 717 of Lecture Notes in Physics, V717
  • [2] STRUCTURE OF TIME-EVOLUTION PROCESS IN MANY-BODY SYSTEMS
    BALESCU, R
    WALLENBORN, J
    [J]. PHYSICA, 1971, 54 (04): : 477 - +
  • [3] BALESCU R, 1975, EQUILIBRIUM NONEQUIL, P556
  • [4] Stochastic problems in physics and astronomy
    Chandrasekhar, S
    [J]. REVIEWS OF MODERN PHYSICS, 1943, 15 (01) : 0001 - 0089
  • [5] QUASIPARTICLES AND CONTRACTED DESCRIPTION
    GEORGE, C
    [J]. PHYSICA, 1967, 37 (02): : 182 - &
  • [6] DYNAMICS OF THE DISSIPATIVE 2-STATE SYSTEM
    LEGGETT, AJ
    CHAKRAVARTY, S
    DORSEY, AT
    FISHER, MPA
    GARG, A
    ZWERGER, W
    [J]. REVIEWS OF MODERN PHYSICS, 1987, 59 (01) : 1 - 85
  • [7] GENERATORS OF QUANTUM DYNAMICAL SEMIGROUPS
    LINDBLAD, G
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 48 (02) : 119 - 130
  • [8] Nicolis G., 1977, SELF ORG NONEQUILIBR
  • [9] PAULI W, 1928, FESTSCHRIFT 60 GEBUR, P30
  • [10] REDUCED DYNAMICS NEED NOT BE COMPLETELY POSITIVE
    PECHUKAS, P
    [J]. PHYSICAL REVIEW LETTERS, 1994, 73 (08) : 1060 - 1062