RING STRUCTURES OF RATIONAL EQUIVARIANT COHOMOLOGY RINGS AND RING HOMOMORPHISMS BETWEEN THEM

被引:0
|
作者
Chen, Yanchang [1 ]
Wang, Yanying [1 ]
机构
[1] Hebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050016, Peoples R China
来源
HOUSTON JOURNAL OF MATHEMATICS | 2013年 / 39卷 / 02期
关键词
G-manifold; equivariant index; equivariant cohomology; DUALITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a class of connected oriented (with respect to Q) closed G-manifolds with a non-empty finite fixed point set, each of which is G-equivariantly formal, where G is the circle group S-1. Using localization theorem and equivariant index, we give an explicit description of rational equivariant cohomology of such a G-manifold in terms of algebra. This makes it possible to determine the number of equivariant cohomology rings (up to isomorphism) of such 2- and 4-dimensional G-manifolds. Moreover, we obtain an analytic description of the ring homomorphism between equivariant cohomology rings of such two G-manifolds induced by a G-equivariant map, and show a characterization of the ring homomorphism.
引用
收藏
页码:475 / 485
页数:11
相关论文
共 10 条
  • [1] RING STRUCTURES OF MOD p EQUIVARIANT COHOMOLOGY RINGS AND RING HOMOMORPHISMS BETWEEN THEM
    Chen, Y.
    Wang, Y.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2012, 38 (02): : 529 - 542
  • [2] On the Spectrum of the Equivariant Cohomology Ring
    Goresky, Mark
    MacPherson, Robert
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2010, 62 (02): : 262 - 283
  • [3] A new equivariant cohomology ring
    Bohui Chen
    Cheng-Yong Du
    Tiyao Li
    Mathematische Zeitschrift, 2020, 295 : 1163 - 1182
  • [4] A new equivariant cohomology ring
    Chen, Bohui
    Du, Cheng-Yong
    Li, Tiyao
    MATHEMATISCHE ZEITSCHRIFT, 2020, 295 (3-4) : 1163 - 1182
  • [5] Equivariant cohomology and analytic descriptions of ring isomorphisms
    Chen, Bo
    Lue, Zhi
    MATHEMATISCHE ZEITSCHRIFT, 2009, 261 (04) : 891 - 908
  • [6] Equivariant cohomology and analytic descriptions of ring isomorphisms
    Bo Chen
    Zhi Lü
    Mathematische Zeitschrift, 2009, 261 : 891 - 908
  • [7] The equivariant cohomology ring of a cohomogeneity-one action
    Jeffrey D. Carlson
    Oliver Goertsches
    Chen He
    Augustin-Liviu Mare
    Geometriae Dedicata, 2019, 203 : 205 - 223
  • [8] The equivariant cohomology ring of a cohomogeneity-one action
    Carlson, Jeffrey D.
    Goertsches, Oliver
    He, Chen
    Mare, Augustin-Liviu
    GEOMETRIAE DEDICATA, 2019, 203 (01) : 205 - 223
  • [9] A GKM description of the equivariant cohomology ring of a homogeneous space
    Guillemin, V
    Holm, T
    Zara, C
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2006, 23 (01) : 21 - 41
  • [10] A GKM description of the equivariant cohomology ring of a homogeneous space
    V. Guillemin
    T. Holm
    C. Zara
    Journal of Algebraic Combinatorics, 2006, 23 : 21 - 41