H1-Galerkin mixed finite element method for the regularized long wave equation

被引:72
作者
Guo, L
Chen, H
机构
[1] Shanghai Jiao Tong Univ, Dept Appl Math, Shanghai 200240, Peoples R China
[2] Shandong Normal Univ, Dept Math, Jinan, Peoples R China
关键词
RLW equation; H-1-Galerkin mixed finite element method; optimal error estimates;
D O I
10.1007/s00607-005-0158-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, an H-1-Galerkin mixed finite element method is proposed for the 1-D regularized long wave (RLW) equation u(t)+u(x)+uu(x)-delta u(xxt)=0. The existence of unique solutions of the semi-discrete and fully discrete H-1-Galerkin mixed finite element methods is proved, and optimal error estimates are established. Our method can simultaneously approximate the scalar unknown and the vector flux effectively, without requiring the LBB consistency condition. Finally, some numerical results are provided to illustrate the efficacy of our method.
引用
收藏
页码:205 / 221
页数:17
相关论文
共 33 条
[1]  
Adams R., 1975, Sobolev space
[2]   GALERKIN METHODS APPLIED TO SOME MODEL EQUATIONS FOR NONLINEAR DISPERSIVE WAVES [J].
ALEXANDER, ME ;
MORRIS, JL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 30 (03) :428-451
[3]   NUMERICAL SCHEMES FOR A MODEL FOR NONLINEAR DISPERSIVE WAVES [J].
BONA, JL ;
PRITCHARD, WG ;
SCOTT, LR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 60 (02) :167-186
[4]   2 FAMILIES OF MIXED FINITE-ELEMENTS FOR 2ND ORDER ELLIPTIC PROBLEMS [J].
BREZZI, F ;
DOUGLAS, J ;
MARINI, LD .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :217-235
[5]   MIXED FINITE-ELEMENTS FOR 2ND-ORDER ELLIPTIC PROBLEMS IN 3 VARIABLES [J].
BREZZI, F ;
DOUGLAS, J ;
DURAN, R ;
FORTIN, M .
NUMERISCHE MATHEMATIK, 1987, 51 (02) :237-250
[6]  
Campbell S. L., 1989, NUMERICAL SOLUTION I
[7]   A PRIORI ESTIMATES FOR MIXED FINITE-ELEMENT METHODS FOR THE WAVE-EQUATION [J].
COWSAR, LC ;
DUPONT, TF ;
WHEELER, MF .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1990, 82 (1-3) :205-222
[8]  
DOUGLAS J, 1983, RAIRO-ANAL NUMER-NUM, V17, P17
[9]  
DOUGLAS J, 1985, MATH COMPUT, V44, P39, DOI 10.1090/S0025-5718-1985-0771029-9
[10]  
Douglas Jr. J., 1975, MATH ASPECT FINITE E, P383