A New Mechanism for THz Detection Based on the Tunneling Effect in Bi-Layer Graphene Nanoribbons

被引:3
作者
Maffucci, Antonio [1 ,2 ]
机构
[1] Univ Cassino & Southern Lazio, Elect & Informat Engn Dept, I-03043 Cassino, Italy
[2] Ist Nazl Fis Nucl, Natl Inst Nucl Phys, I-00044 Frascati, Italy
来源
APPLIED SCIENCES-BASEL | 2015年 / 5卷 / 04期
关键词
graphene; graphene nanoribbons; terahertz electronics; tunneling effect; MULTIWALL CARBON NANOTUBES; TRANSMISSION-LINE MODEL; CONDUCTIVITY; GENERATION;
D O I
10.3390/app5041102
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A new possible mechanism of signal detection in the THz range is investigated, based on the excitation of resonances due to the tunneling effect between two graphene nanoribbons. A simple detector is proposed, where two graphene nanoribbons are used to contact two copper electrodes. The terminal voltages are shown to exhibit strong resonances when the frequency of an external impinging field is tuned to the characteristic tunneling frequency of the graphene layer pair. An electrodynamic model for the electron transport along the graphene nanoribbons is extended here to include the tunneling effect, and a coupled transmission line model is finally derived. This model is able to predict not only the tunneling resonance, but also the well-known plasmon resonances, related to the propagation of slow surface waves.
引用
收藏
页码:1102 / 1116
页数:15
相关论文
共 40 条
  • [1] Carbon-based electronics
    Avouris, Phaedon
    Chen, Zhihong
    Perebeinos, Vasili
    [J]. NATURE NANOTECHNOLOGY, 2007, 2 (10) : 605 - 615
  • [2] Plasmon polariton deceleration in graphene structures
    Batrakov, Konstantin G.
    Saroka, Vasily A.
    Maksimenko, Sergey A.
    Thomsen, Christian
    [J]. JOURNAL OF NANOPHOTONICS, 2012, 6
  • [3] Terahertz processes in carbon nanotubes
    Batrakov, Konstantin G.
    Kibis, Oleg V.
    Kuzhir, Polina P.
    da Costa, Marcelo Rosenau
    Portnoi, Mikhail E.
    [J]. JOURNAL OF NANOPHOTONICS, 2010, 4
  • [4] Multiwall Carbon Nanotubes at RF-THz Frequencies: Scattering, Shielding, Effective Conductivity, and Power Dissipation
    Berres, Jay A.
    Hanson, George W.
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2011, 59 (08) : 3098 - 3103
  • [5] Carbon Nanostructures Dedicated to Millimeter-Wave to THz Interconnects
    Brun, Christophe
    Wei, Tan Chong
    Franck, Pierre
    Chong, Yap Chin
    Lu Congxiang
    Leong, Chow Wai
    Tan, Dunlin
    Kang, Tay Beng
    Coquet, Philippe
    Baillargeat, Dominique
    [J]. IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2015, 5 (03) : 383 - 390
  • [6] Quantitative theory of nanowire and nanotube antenna performance
    Burke, Peter J.
    Li, Shengdong
    Yu, Zhen
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2006, 5 (04) : 314 - 334
  • [7] AC performance of nanoelectronics: towards a ballistic THz nanotube transistor
    Burke, PJ
    [J]. SOLID-STATE ELECTRONICS, 2004, 48 (10-11) : 1981 - 1986
  • [8] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [9] Fully Integrated Graphene and Carbon Nanotube Interconnects for Gigahertz High-Speed CMOS Electronics
    Chen, Xiangyu
    Akinwande, Deji
    Lee, Kyeong-Jae
    Close, Gael F.
    Yasuda, Shinichi
    Paul, Bipul C.
    Fujita, Shinobu
    Kong, Jing
    Wong, H. -S. Philip
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, 57 (11) : 3137 - 3143
  • [10] Circuit Models of Carbon-Based Interconnects for Nanopackaging
    Chiariello, Andrea Gaetano
    Maffucci, Antonio
    Miano, Giovanni
    [J]. IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2013, 3 (11): : 1926 - 1937