BORG-TYPE UNIQUENESS THEOREMS FOR PERIODIC JACOBI OPERATORS WITH MATRIX-VALUED COEFFICIENTS

被引:10
作者
Korotyaev, Evgeny [1 ]
Kutsenko, Anton [2 ]
机构
[1] Cardiff Univ, Sch Math, Cardiff CF24 4AG, S Glam, Wales
[2] St Petersburg State Univ, Dept Math, St Petersburg 199034, Russia
基金
英国工程与自然科学研究理事会;
关键词
SCHRODINGER;
D O I
10.1090/S0002-9939-09-09827-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a simple proof of Borg-type uniqueness theorems for periodic Jacobi operators with matrix-valued coefficients.
引用
收藏
页码:1989 / 1996
页数:8
相关论文
共 16 条
[1]  
Abramowitz M., 1948, Handbook of mathematical functions with formulas, graphs, and mathematical tables, V55, DOI DOI 10.2307/2282672
[2]  
[Anonymous], LECT NOTES PHYS
[3]  
BATTIG D, 1993, J MATH PURE APPL, V72, P553
[4]  
BRUNING J, 2006, INVERSE SPECTRAL ANA
[5]   Trace formulas and Borg-type theorems for matrix-valued Jacobi and Dirac finite difference operators [J].
Clark, S ;
Gesztesy, F ;
Renger, W .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 219 (01) :144-182
[6]   On Weyl-Titchmarsh theory for singular finite difference Hamiltonian systems [J].
Clark, S ;
Gesztesy, F .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 171 (1-2) :151-184
[7]  
Gesztesy F, 2002, MATH NACHR, V239, P103, DOI 10.1002/1522-2616(200206)239:1<103::AID-MANA103>3.0.CO
[8]  
2-F
[9]   Marchenko-Ostrovski mappings for periodic Jacobi matrices [J].
Korotyaev, E. ;
Kutsenko, A. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2007, 14 (04) :448-452
[10]   Gap-length mapping for periodic Jacobi matrices [J].
Korotyaev, E. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2006, 13 (01) :64-69