Critical and supercritical properties of Lennard-Jones fluids

被引:25
作者
Heyes, David M. [1 ]
Woodcock, Leslie V. [2 ]
机构
[1] Univ London, Dept Phys, Egham TW20 0EX, Surrey, England
[2] Univ Algarve, Dept Phys, P-8000 Faro, Portugal
关键词
Critical point; Lennard-Jones; Percolation transition; Supercritical fluid; SURFACE-TENSION; WIDOM LINE; LIQUID; COEXISTENCE; TRANSITION; BEHAVIOR; PHASES;
D O I
10.1016/j.fluid.2013.07.056
中图分类号
O414.1 [热力学];
学科分类号
摘要
Critical properties for Lennard-Jones fluids are seen to be consistent with an alternative description of liquid-gas criticality to the van der Waals hypothesis. At the critical temperature (T-c) there is a critical dividing line on the Gibbs density surface rather than a critical point singularity. We report high-precision thermodynamic pressures from MD simulations for more than 2000 state points along 7 near-critical isotherms, for system sizes N=4096 and 10,976 for a Lennard-Jones fluid. We obtain k(B)T(c)/epsilon = 1.3365 +/- 0.0005 and critical pressure p(c)sigma(3)/epsilon = 0.1405 +/- 0.0002 which remains constant between two coexisting densities rho(c)(gas) sigma(3) = 0.266 +/- 0.01 and rho(c)(liquid) sigma(3) = 0.376 +/- 0.01 determined by supercritical percolation transition loci. A revised plot of the liquid-vapor surface tension shows that it goes to zero at this density difference, which, along with a direct evaluation of Gibbs chemical potential along the critical isotherm, reaffirms a coexisting dividing line of critical states. Analysis of the distribution of clusters from MD simulations along a supercritical isotherm (T*=1.5) gives new insight into the supercritical boundaries of gas and liquid phases, and the nature of the supercritical mesophase. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:301 / 308
页数:8
相关论文
共 50 条
  • [31] Machine learning prediction of self-diffusion in Lennard-Jones fluids
    Allers, Joshua P.
    Harvey, Jacob A.
    Garzon, Fernando H.
    Alam, Todd M.
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (03)
  • [32] Molecular dynamics study of nanobubbles in the equilibrium Lennard-Jones fluid
    Zhukhovitskii, D. I.
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (16)
  • [33] Modelling of disjoining pressure for Lennard-Jones free thin films
    Peng, Tiefeng
    Gao, Xuechao
    Li, Qibin
    Yang, Siyuan
    Tang, Qizhong
    MODERN PHYSICS LETTERS B, 2016, 30 (10):
  • [34] Adsorption behaviors of supercritical Lennard-Jones fluid in slit-like pores
    Li, Yingfeng
    Cui, Mengqi
    Peng, Bo
    Qin, Mingde
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2018, 83 : 84 - 91
  • [35] Lattice Boltzmann method for Lennard-Jones fluids based on the gradient theory of interfaces
    Kikkinides, E. S.
    Kainourgiakis, M. E.
    Yiotis, A. G.
    Stubos, A. K.
    PHYSICAL REVIEW E, 2010, 82 (05):
  • [36] Generalized coupling parameter expansion: Application to square well and Lennard-Jones fluids
    Ramana, A. Sai Venkata
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (04)
  • [37] Machine Learning Self-Diffusion Prediction for Lennard-Jones Fluids in Pores
    Leverant, Calen J.
    Harvey, Jacob A.
    Alam, Todd M.
    Greathouse, Jeffery A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (46) : 25898 - 25906
  • [38] Investigation of Phase Behaviors for Associating Lennard-Jones Fluids Confined in Slit Pores
    Wu Huijie
    Li Xiaosen
    ACTA CHIMICA SINICA, 2010, 68 (17) : 1681 - 1686
  • [39] Lennard-jones energy parameter for pure fluids from scaled particle theory
    Tahery, Reza
    Modarress, Hamid
    IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2007, 26 (02): : 1 - 8
  • [40] Dynamical properties of one-dimensional Lennard-Jones lattice
    Okabe, T
    Yamada, H
    Goda, M
    PHYSICA B, 1999, 263 : 445 - 447