Wood plastic composite using graphene nanoplatelets

被引:69
作者
Sheshmani, Shabnam [1 ]
Ashori, Alireza [2 ]
Fashapoyeh, Marzieh Arab [1 ]
机构
[1] Islamic Azad Univ, Dept Chem, Shahr E Rey Branch, Tehran, Iran
[2] IROST, Dept Chem Technol, Tehran, Iran
基金
美国国家科学基金会;
关键词
Graphene; Mechanical properties; Wood plastic composite; Nanoplatelets; Coupling agent; MECHANICAL-PROPERTIES; CARBON; NANOCOMPOSITES; REINFORCEMENT; CONDUCTIVITY; FIBER;
D O I
10.1016/j.ijbiomac.2013.03.047
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This article presents the preparation and characterization of wood flour/polypropylene (PP) composites filled with graphene nanoplatelets (GNPs). The effects of GNPs, as reinforcing agent, on the mechanical and physical properties were also investigated. In order to increase the interphase adhesion, maleic anhydride grafted polypropylene (MAPP) was added as a coupling agent to all the composites studied. The morphology of the specimens was characterized using scanning electron microscopy (SEM) technique. The results of strength measurements indicated that when 0.8 wt.% GNPs were added, tensile and flexural properties reached their maximum values. At high levels of GNPs loading (3-5 wt.%), increased population of GNPs leads to agglomeration and stress transfer gets blocked. The addition of GNPs filler moderately increased the impact strength of composites. Addition of GNPs decreased the average water uptake and thickness swelling by 35% and 30%, respectively, compared to the control sample (without GNPs). It was observed that the composites filled with GNPs decomposed at higher temperatures compared to the pure PP and control. In all cases, the degradation temperatures shifted to higher values after the addition of GNPs. The improvement of physical and mechanical properties of composites confirmed that GNPs have good reinforcement and the optimum effect of GNPs was achieved at 0.8 wt.%. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 36 条
[1]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[2]   Functionalized Graphene Sheet-Poly(vinylidene fluoride) Conductive Nanocomposites [J].
Ansari, Seema ;
Giannelis, Emmanuel P. .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2009, 47 (09) :888-897
[3]   Effects of nanoparticles on the mechanical properties of rice straw/polypropylene composites [J].
Ashori, Alireza .
JOURNAL OF COMPOSITE MATERIALS, 2013, 47 (02) :149-154
[4]   Preparation and characterization of bagasse/HDPE composites using multi-walled carbon nanotubes [J].
Ashori, Alireza ;
Sheshmani, Shabnam ;
Farhani, Foad .
CARBOHYDRATE POLYMERS, 2013, 92 (01) :865-871
[5]  
Ashori A, 2011, EUR J WOOD WOOD PROD, V69, P663, DOI 10.1007/s00107-010-0488-9
[6]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[7]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[8]   Mechanical properties of multiwall carbon nanotubes/epoxy composites:: influence of network morphology [J].
Breton, Y ;
Désarmot, G ;
Salvetat, JP ;
Delpeux, S ;
Sinturel, C ;
Béguin, F ;
Bonnamy, S .
CARBON, 2004, 42 (5-6) :1027-1030
[9]   Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite [J].
Chang, TE ;
Jensen, LR ;
Kisliuk, A ;
Pipes, RB ;
Pyrz, R ;
Sokolov, AP .
POLYMER, 2005, 46 (02) :439-444
[10]   The influence of carbon nanotube aspect ratio on the foam morphology of MWNT/PMMA nanocomposite foams [J].
Chen, Limeng ;
Ozisik, Rahmi ;
Schadler, Linda S. .
POLYMER, 2010, 51 (11) :2368-2375