Sparse space-time Galerkin BEM for the nonstationary heat equation

被引:4
作者
Chernov, Alexey [1 ,2 ]
Schwab, Christoph [3 ]
机构
[1] Univ Bonn, Hausdorff Ctr Math, D-53115 Bonn, Germany
[2] Univ Bonn, Inst Numer Simulat, D-53115 Bonn, Germany
[3] ETH, ETH Zentrum, Seminar Appl Math, CH-8092 Zurich, Switzerland
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2013年 / 93卷 / 6-7期
基金
欧洲研究理事会;
关键词
Sparse tensor product; space-time discretization; boundary integral equations; boundary element methods;
D O I
10.1002/zamm.201100192
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct and analyze sparse tensorized space-time Galerkin discretizations for boundary integral equations resulting from the boundary reduction of nonstationary diffusion equations with either Dirichlet or Neumann boundary conditions. The approach is based on biorthogonal multilevel subspace decompositions and a weighted sparse tensor product construction. We compare the convergence behavior of the proposed method to the standard full tensor product discretizations. In particular, we show for the problem of nonstationary heat conduction in a bounded two- or three-dimensional spatial domain that low order sparse space-time Galerkin schemes are competitive with high order full tensor product discretizations in terms of the asymptotic convergence rate of the Galerkin error in the energy norms, under lower regularity requirements on the solution.
引用
收藏
页码:403 / 413
页数:11
相关论文
共 13 条
[1]  
Bourgeois C, 2001, NUMER MATH, V87, P407, DOI 10.1007/s002110000191
[2]  
Chernov A., 2011, MATH COMPUT IN PRESS
[3]   BOUNDARY INTEGRAL-OPERATORS FOR THE HEAT-EQUATION [J].
COSTABEL, M .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1990, 13 (04) :498-552
[4]   A FAST ALGORITHM FOR THE EVALUATION OF HEAT POTENTIALS [J].
GREENGARD, L ;
STRAIN, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1990, 43 (08) :949-963
[5]  
Griebel M., 2011, MATH COMPUT IN PRESS
[6]   Wavelets with short support [J].
Han, Bin ;
Shen, Zuowei .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (02) :530-556
[7]  
NOON P. J., 1988, THESIS U MARYLAND
[8]  
Sauter SA, 2011, SPR SER COMPUT MATH, V39, P1, DOI 10.1007/978-3-540-68093-2_1
[9]   Time discretization of parabolic problems by the HP-version of the discontinuous Galerkin finite element method [J].
Schötzau, D ;
Schwab, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (03) :837-875
[10]   SPACE-TIME ADAPTIVE WAVELET METHODS FOR PARABOLIC EVOLUTION PROBLEMS [J].
Schwab, Christoph ;
Stevenson, Rob .
MATHEMATICS OF COMPUTATION, 2009, 78 (267) :1293-1318