Topoisomerase Inhibitors: Fluoroquinolone Mechanisms of Action and Resistance

被引:334
作者
Hooper, David C. [1 ]
Jacoby, George A. [2 ]
机构
[1] Massachusetts Gen Hosp, Div Infect Dis, Boston, MA 02114 USA
[2] Lahey Hosp & Med Ctr, Burlington, MA 01805 USA
基金
美国国家卫生研究院;
关键词
MULTIDRUG EFFLUX PUMP; MULTIPLE ANTIBIOTIC-RESISTANCE; MEXA-MEXB-OPRM; PENTAPEPTIDE REPEAT PROTEINS; 16S RIBOSOMAL-RNA; DNA GYRASE GYRA; QUINOLONE RESISTANCE; ESCHERICHIA-COLI; STAPHYLOCOCCUS-AUREUS; PSEUDOMONAS-AERUGINOSA;
D O I
10.1101/cshperspect.a025320
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Quinolone antimicrobials are widely used in clinical medicine and are the only current class of agents that directly inhibit bacterial DNA synthesis. Quinolones dually target DNA gyrase and topoisomerase IV binding to specific domains and conformations so as to block DNA strand passage catalysis and stabilize DNA-enzyme complexes that block the DNA replication apparatus and generate double breaks in DNA that underlie their bactericidal activity. Resistance has emerged with clinical use of these agents and is common in some bacterial pathogens. Mechanisms of resistance include mutational alterations in drug target affinity and efflux pump expression and acquisition of resistance-conferring genes. Resistance mutations in one or both of the two drug target enzymes are commonly in a localized domain of the GyrA and ParC subunits of gyrase and topoisomerase IV, respectively, and reduce drug binding to the enzyme-DNA complex. Other resistance mutations occur in regulatory genes that control the expression of native efflux pumps localized in the bacterial membrane(s). These pumps have broad substrate profiles that include other antimicrobials as well as quinolones. Mutations of both types can accumulate with selection pressure and produce highly resistant strains. Resistance genes acquired on plasmids confer low-level resistance that promotes the selection of mutational high-level resistance. Plasmid-encoded resistance is because of Qnr proteins that protect the target enzymes from quinolone action, a mutant aminoglycoside-modifying enzyme that also modifies certain quinolones, and mobile efflux pumps. Plasmids with these mechanisms often encode additional antimicrobial resistances and can transfer multidrug resistance that includes quinolones.
引用
收藏
页数:21
相关论文
共 192 条
[1]   Mechanism of Quinolone Action and Resistance [J].
Aldred, Katie J. ;
Kerns, Robert J. ;
Osheroff, Neil .
BIOCHEMISTRY, 2014, 53 (10) :1565-1574
[2]   Drug Interactions with Bacillus anthracis Topoisomerase IV: Biochemical Basis for Quinolone Action and Resistance [J].
Aldred, Katie J. ;
McPherson, Sylvia A. ;
Wang, Pengfei ;
Kerns, Robert J. ;
Graves, David E. ;
Turnbough, Charles L., Jr. ;
Osheroff, Neil .
BIOCHEMISTRY, 2012, 51 (01) :370-381
[3]   The mar regulon:: multiple resistance to antibiotics and other toxic chemicals [J].
Alekshun, MN ;
Levy, SB .
TRENDS IN MICROBIOLOGY, 1999, 7 (10) :410-413
[4]   Cloning and characterization of SmeDEF, a novel multidrug efflux pump from Stenotrophomonas maltophilia [J].
Alonso, A ;
Martínez, JL .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2000, 44 (11) :3079-3086
[5]  
[Anonymous], 51 INT C ANT AG CHEM
[6]   Fluoroquinolone Efflux in Streptococcus suis Is Mediated by SatAB and Not by SmrA [J].
Antonio Escudero, Jose ;
San Millan, Alvaro ;
Gutierrez, Belen ;
Hidalgo, Laura ;
La Ragione, Roberto M. ;
AbuOun, Manal ;
Galimand, Marc ;
Jose Ferrandiz, Maria ;
Dominguez, Lucas ;
de la Campa, Adela G. ;
Gonzalez-Zorn, Bruno .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2011, 55 (12) :5850-5860
[7]   The AcrB multidrug transporter plays a major role in high-level fluoroquinolone resistance in Salmonella enterica serovar typhimurium phage type DT204 [J].
Baucheron, S ;
Imberechts, H ;
Chaslus-Dancla, E ;
Cloeckaert, A .
MICROBIAL DRUG RESISTANCE, 2002, 8 (04) :281-289
[8]   Type IIA topoisomerase inhibition by a new class of antibacterial agents [J].
Bax, Benjamin D. ;
Chan, Pan F. ;
Eggleston, Drake S. ;
Fosberry, Andrew ;
Gentry, Daniel R. ;
Gorrec, Fabrice ;
Giordano, Ilaria ;
Hann, Michael M. ;
Hennessy, Alan ;
Hibbs, Martin ;
Huang, Jianzhong ;
Jones, Emma ;
Jones, Jo ;
Brown, Kristin Koretke ;
Lewis, Ceri J. ;
May, Earl W. ;
Saunders, Martin R. ;
Singh, Onkar ;
Spitzfaden, Claus E. ;
Shen, Carol ;
Shillings, Anthony ;
Theobald, Andrew J. ;
Wohlkonig, Alexandre ;
Pearson, Neil D. ;
Gwynn, Michael N. .
NATURE, 2010, 466 (7309) :935-U51
[9]   Description of an original integron encompassing blaVIM-2, qnrVC1 and genes encoding bacterial group II intron proteins in Pseudomonas aeruginosa [J].
Belotti, P. T. ;
Thabet, L. ;
Laffargue, A. ;
Andre, C. ;
Coulange-Mayonnove, L. ;
Arpin, C. ;
Messadi, A. ;
M'Zali, F. ;
Quentin, C. ;
Dubois, V. .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2015, 70 (08) :2237-2240
[10]   AcrB drug-binding pocket substitution confers clinically relevant resistance and altered substrate specificity [J].
Blair, Jessica M. A. ;
Bavro, Vassiliy N. ;
Ricci, Vito ;
Modi, Niraj ;
Cacciotto, Pierpaolo ;
Kleinekathoefer, Ulrich ;
Ruggerone, Paolo ;
Vargiu, Attilio V. ;
Baylay, Alison J. ;
Smith, Helen E. ;
Brandon, Yvonne ;
Galloway, David ;
Piddock, Laura J. V. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (11) :3511-3516