Comparative metabolomic profiling in the roots of salt-tolerant and salt-intolerant maize cultivars treated with NaCl stress

被引:7
|
作者
Yue, J. Y. [1 ]
Wang, L. H. [1 ]
Dou, X. T. [1 ]
Wang, Y. J. [1 ]
Wang, H. Z. [1 ]
机构
[1] Tianjin Normal Univ, Tianjin Key Lab Anim & Plant Resistance, Tianjin 300387, Peoples R China
基金
美国国家科学基金会;
关键词
cell death; glucose metabolism; leaf elongation; nucleic acid metabolism; root morphology; Zea mays; TRANSCRIPTION FACTOR; OSMOTIC ADJUSTMENT; CELL-DEATH; SALINITY; NA+; K+;
D O I
10.32615/bp.2020.082
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Maize crops are sensitive to NaCl stress, which is one of the most harmful abiotic stresses affecting agricultural productivity. To gain further insights into the differential metabolic responses to NaCl stress, we employed metabolomics and physiological approaches to understand the response of salt-tolerant (PH6WC) and sensitive (PH4CV) cultivars of maize. Salt stress caused a significant reduction in root growth, lower root numbers, softened roots, leaf etiolation, inhibition of leaf formation, and decreased shoot height and stem width in both the tolerant and sensitive genotypes compared with the control. These morphological characteristics increased with the progression of the NaCl concentration, however, they were less prominent in the salt-tolerant genotype. Evans blue staining demonstrated that NaCl-induced root cell death, and the root cells of 'PH4CV' were almost completely dead following 9 d of exposure to 100 mM NaCl. Under treatment with 100 mM NaCl, 79 compounds in the roots of 'PH4CV' were identified as being significant metabolites, and 85 compounds were identified as being significant metabolites in the roots of 'PH6WC'. The NaCl-induced changes in the metabolomes of these two maize cultivars indicate that 80 root-based compounds were different between NaCl-treated plants and controls. Among these metabolites, 30 were found in both maize cultivars when responding to NaCl stress. These compounds were associated with the metabolism of some basic compounds such as cis-9-palmitoleic acid, L-pyroglutamic acid, galactinol, deoxyadenosine, and adenine. The changing abundance of the 30 metabolites was not completely consistent in 'PH4CV' and 'PH6WC'. Glucose metabolism was exclusively induced by NaCl in the 'PH4CV' maize seedlings whereas nucleic acid metabolism was more significant in the 'PH6WC' maize seedlings in response to NaCl stress. Overall, 'PH6WC' and 'PH4CV' responded differently to NaCl stress, and this information is helpful in understanding how maize seedlings respond to this type of abiotic stress.
引用
收藏
页码:569 / 577
页数:9
相关论文
共 50 条
  • [1] ANTIOXIDANT RESPONSE TO NACL STRESS IN SALT-TOLERANT AND SALT-SENSITIVE CULTIVARS OF COTTON
    GOSSETT, DR
    MILLHOLLON, EP
    LUCAS, MC
    CROP SCIENCE, 1994, 34 (03) : 706 - 714
  • [3] Growth Response to Ionic and Osmotic Stress of NaCl in Salt-tolerant and Salt-sensitive Maize
    Zhao, Ke-Fu
    Song, Jie
    Fan, Hai
    Zhou, San
    Zhao, Meng
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2010, 52 (05) : 468 - 475
  • [4] Comparative Transcriptome Analysis of Salt-Tolerant and -Sensitive Soybean Cultivars under Salt Stress
    Cheng, Ye
    Cheng, Xiangqiang
    Wei, Kai
    Wang, Yan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (18)
  • [5] Comparative transcriptome analysis of gene responses of salt-tolerant and salt-sensitive rice cultivars to salt stress
    Xin Fang
    Junjie Mo
    Hongkai Zhou
    Xuefeng Shen
    Yuling Xie
    Jianghuan Xu
    Shan Yang
    Scientific Reports, 13
  • [6] Comparative transcriptome analysis of gene responses of salt-tolerant and salt-sensitive rice cultivars to salt stress
    Fang, Xin
    Mo, Junjie
    Zhou, Hongkai
    Shen, Xuefeng
    Xie, Yuling
    Xu, Jianghuan
    Yang, Shan
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [7] Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes
    Neto, ADD
    Prisco, JT
    Enéas, J
    de Abreu, CEB
    Gomes, E
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2006, 56 (01) : 87 - 94
  • [8] Comparative Studies on the Physiobiochemical, Enzymatic, and Ionic Modifications in Salt-tolerant and Salt-sensitive Citrus Rootstocks under NaCl Stress
    Balal, Rashad M.
    Khan, Muhammad M.
    Shahid, Muhammad A.
    Mattson, Neil S.
    Abbas, Tahira
    Ashfaq, Muhammad
    Garcia-Sanchez, Franscisco
    Ghazanfer, Usman
    Gimeno, Vicente
    Iqbal, Zafar
    JOURNAL OF THE AMERICAN SOCIETY FOR HORTICULTURAL SCIENCE, 2012, 137 (02) : 86 - 95
  • [9] Effect of NaCl Stress on Chlorophyll Biosynthesis, Proline, Lipid Peroxidation and Antioxidative Enzymes in Leaves of Salt-Tolerant and Salt-Sensitive Barley Cultivars
    Yildiz, Mustafa
    Terzi, Hakan
    JOURNAL OF AGRICULTURAL SCIENCES-TARIM BILIMLERI DERGISI, 2013, 19 (02): : 79 - 88
  • [10] The influence of host genotype and salt stress on the seed endophytic community of salt-sensitive and salt-tolerant rice cultivars
    Walitang, Denver I.
    Kim, Chang-Gi
    Kim, Kiyoon
    Kang, Yeongyeong
    Kim, Young Kee
    Sa, Tongmin
    BMC PLANT BIOLOGY, 2018, 18