Construction of Single-Phase Nickel Disulfide Microflowers as High-Performance Electrodes for Hybrid Supercapacitors

被引:30
作者
Dai, Ziyang [1 ]
Xue, Lichun [1 ]
Zhang, Zhenbao [1 ]
Gao, Yang [2 ]
Wang, Jian [3 ]
Gao, QIngsheng [1 ]
Chen, Dengjie [1 ]
机构
[1] Jinan Univ, Coll Chem & Mat Sci, Guangzhou 510632, Peoples R China
[2] Hunan Univ, Coll Mat Sci & Engn, Changsha 410082, Peoples R China
[3] Seoul Natl Univ, Dept Chem, Coll Sci, Seoul 08826, South Korea
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
HOLLOW SPHERES; POROUS CARBON; NIS MICROFLOWERS; ENERGY-STORAGE; TIO2; ANATASE; NANOSHEETS; COMPOSITE; BATTERY; SULFIDE;
D O I
10.1021/acs.energyfuels.0c01797
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Developing supercapacitors with simultaneous superior power and energy density for energy-storage devices remains a challenge. In this work, single-phase NiS2 microflowers were synthesized through a hydrothermal process coupled with subsequent sulfidation. The obtained NiS2 microflowers perfectly inherited the flowerlike structure of the precursor, which was composed of nanosheets with firmly integrated nanoparticles. With the benefit of the single-phase crystal structure, suppressed surface oxidation, relatively high apparent conductivity, and unique nano/microstructure, the NiS2 microflowers presented outstanding electrochemical performance in the LiOH electrolyte. Specifically, the NiS2 microflowers exhibited high specific capacities of 813 C g(-1) at 1 A g(-1) and 580 C g(-1) at 20 A g(-1) and retained 93% of its initial capacity after 10,000-time cycling test. Moreover, an optimized NiS2/ / activated carbon (AC) hybrid supercapacitor fabricated with NiS2 microflowers as the positive electrode and AC as the negative electrode operated stably at a large voltage window of 1.8 V. It further delivered a considerable energy density of 39.8 W h kg(-1) at 900 W kg(-1). Impressively, the intriguing nano/microstructure further endowed the almost unabated capacitance after continuous cycling of 10,000 times. This study will definitely promote the design and preparation of high-performance nickel-based sulfides for hybrid supercapacitors.
引用
收藏
页码:10178 / 10187
页数:10
相关论文
共 55 条
[1]   Facile synthesis of a reduced graphene oxide wrapped porous NiCo2O4 composite with superior performance as an electrode material for supercapacitors [J].
Al-Rubaye, Shaymaa ;
Rajagopalan, Ranjusha ;
Dou, Shi Xue ;
Cheng, Zhenxiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (36) :18989-18997
[2]   Beyond Conventional Activating Methods, a Green Approach for the Synthesis of Biocarbon and Its Supercapacitor Electrode Performance [J].
Altinci, Osman Cem ;
Demir, Muslum .
ENERGY & FUELS, 2020, 34 (06) :7658-7665
[3]   Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J].
Augustyn, Veronica ;
Simon, Patrice ;
Dunn, Bruce .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1597-1614
[4]   Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices [J].
Chen, Dengjie ;
Chen, Chi ;
Baiyee, Zarah Medina ;
Shao, Zongping ;
Ciucci, Francesco .
CHEMICAL REVIEWS, 2015, 115 (18) :9869-9921
[5]   Yolk-Shell NiS2 Nanoparticle-Embedded Carbon Fibers for Flexible Fiber-Shaped Sodium Battery [J].
Chen, Qi ;
Sun, Shuo ;
Zhai, Teng ;
Yang, Mei ;
Zhao, Xiangyu ;
Xia, Hui .
ADVANCED ENERGY MATERIALS, 2018, 8 (19)
[6]   In Situ Template-Free Ion-Exchange Process to Prepare Visible-Light-Active g-C3N4/NiS Hybrid Photocatalysts with Enhanced Hydrogen Evolution Activity [J].
Chen, Zhihong ;
Sun, Peng ;
Fan, Bing ;
Zhang, Zhengguo ;
Fang, Xiaoming .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (15) :7801-7807
[7]   Highly conductive and nonflammable composite polymer electrolytes for rechargeable quasi-solid-state Li-metal batteries [J].
Dai, Ziyang ;
Yu, Jing ;
Liu, Jiapeng ;
Liu, Rong ;
Sun, Qi ;
Chen, Dengjie ;
Ciucci, Francesco .
JOURNAL OF POWER SOURCES, 2020, 464 (464)
[8]   Template Synthesis of Shape-Tailorable NiS2 Hollow Prisms as High-Performance Supercapacitor Materials [J].
Dai, Ziyang ;
Zang, Xiaoxian ;
Yang, Jun ;
Sun, Chencheng ;
Si, Weili ;
Huang, Wei ;
Dong, Xiaochen .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (45) :25396-25401
[9]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[10]   Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor [J].
Guan, Bing ;
Li, Yu ;
Yin, Biyue ;
Liu, Kefan ;
Wang, Dawei ;
Zhang, Huaihao ;
Cheng, Changjing .
CHEMICAL ENGINEERING JOURNAL, 2017, 308 :1165-1173