The groups of points on abelian surfaces over finite fields

被引:6
作者
Rybakov, Sergey [1 ]
机构
[1] CNRS, UMI 2615, Poncelet Lab, F-75700 Paris, France
来源
ARITHMETIC, GEOMETRY, CRYPTOGRAPHY AND CODING THEORY | 2012年 / 574卷
关键词
Abelian variety; the group of rational points; finite field; Newton polygon; Hodge polygon; VARIETIES;
D O I
10.1090/conm/574/11424
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an abelian surface over a finite field k. The k-isogeny class of A is uniquely determined by a Weil polynomial f(A) of degree 4. We give a classification of the groups of k-rational points on varieties from this class in terms of f(A).
引用
收藏
页码:151 / 158
页数:8
相关论文
共 10 条
[1]  
Berthelot Pierre, 1978, Notes on Crystalline Cohomology
[2]  
DEMAZURE M., 1972, Lecture Notes in Mathematics, V302
[3]  
Kedlaya K., 2010, RHO ACID DIFFERENTIA
[4]   Abelian surfaces over finite fields as Jacobians [J].
Maisner, D ;
Nart, E ;
Howe, EW .
EXPERIMENTAL MATHEMATICS, 2002, 11 (03) :321-337
[5]  
Rybakov S., ARXIV10065959V1
[6]   The groups of points on abelian varieties over finite fields [J].
Rybakov, Sergey .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2010, 8 (02) :282-288
[7]  
Waterhouse W.C., 1969, P S PURE MATH, VXX, P53
[8]  
Waterhouse WC., 1969, ANN SCI ECOLE NORM S, V2, P521, DOI 10.24033/asens.1183
[9]  
Xing C., 1996, Finite Fields Appl, V2, P407, DOI [DOI 10.1006/FFTA.1996.0024, 10.1006/ffta.1996.0024]
[10]   THE STRUCTURE OF THE RATIONAL POINT GROUPS OF SIMPLE ABELIAN-VARIETIES OF DIMENSION 2 OVER FINITE-FIELDS [J].
XING, CP .
ARCHIV DER MATHEMATIK, 1994, 63 (05) :427-430