Parabolic Higgs bundles and representations of the fundamental group of a punctured surface into a real group

被引:16
作者
Biquard, Olivier [1 ,2 ]
Garcia-Prada, Oscar [3 ]
Mundet I Riera, Ignasi [4 ]
机构
[1] Sorbonne Univ, Paris, France
[2] Ecole Normale Super, UMR 8553, CNRS, Paris, France
[3] CSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid, Spain
[4] Univ Barcelona, Fac Matemat & Informat, Barcelona, Spain
关键词
Parabolic Higgs bundle; Punctured surface; Parabolic local system; Non-abelian Hodge correspondence; VECTOR-BUNDLES; MODULI SPACES; BETTI NUMBERS; CURVES; CONNECTIONS; INSTANTONS; EQUATIONS; GEOMETRY; TORSORS; ORBITS;
D O I
10.1016/j.aim.2020.107305
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study parabolic G-Higgs bundles over a compact Riemann surface with fixed punctures, when Gis a real reductive Lie group, and establish a correspondence between these objects and representations of the fundamental group of the punctured surface in G with arbitrary holonomy around the punctures. This generalizes Simpson's results for GL(n, C) to arbitrary complex and real reductive Lie groups. Three interesting features are the relation between the parabolic degree and the Tits geometry of the boundary at infinity of the symmetric space, the treatment of the case when the logarithm of the monodromy is on the boundary of a Weyl alcove, and the correspondence of the orbits encoding the singularity via the Kostant-Sekiguchi correspondence. We also describe some special features of the moduli spaces when Gis a split real form or a group of Hermitian type. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:70
相关论文
共 68 条
[1]  
[Anonymous], 1990, J. Amer. Math. Soc., V3, P713, DOI [10.1090/S0894-0347-1990-1040197-8, DOI 10.2307/1990935]
[2]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615
[3]  
Balaji V, 2015, J ALGEBRAIC GEOM, V24, P1
[4]   Connections on Parahoric Torsors over Curves [J].
Balaji, Vikraman ;
Biswas, Indranil ;
Pandey, Yashonidhi .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2017, 53 (04) :551-585
[5]   MODULI OF PARABOLIC G-BUNDLES ON CURVES [J].
BHOSLE, U ;
RAMANATHAN, A .
MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (02) :161-180
[6]  
BIELAWSKI R, 2007, ALGEBRAIC GROUPS, P1
[7]   Nahm's equations and Poisson structure of complex semisimple Lie algebras [J].
Biquard, O .
MATHEMATISCHE ANNALEN, 1996, 304 (02) :253-276
[8]  
Biquard O, 1997, ANN SCI ECOLE NORM S, V30, P41
[9]   STABLE PARABOLIC BUNDLES AND FLAT SINGULAR CONNECTIONS [J].
BIQUARD, O .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1991, 119 (02) :231-257
[10]  
Biquard O., EXTENDED CORRE UNPUB