In-Depth Experimental and Computational Investigations for Remarkable Gas/Vapor Sorption, Selectivity, and Affinity by a Porous Nitrogen-Rich Covalent Organic Framework

被引:102
作者
Das, Prasenjit [1 ]
Mandal, Sanjay K. [1 ]
机构
[1] Indian Inst Sci Educ & Res Mohali, Dept Chem Sci, Sect 81, Manauli PO, Mohali 140306, Punjab, India
关键词
CARBON-DIOXIDE CAPTURE; CO2; CAPTURE; GAS-STORAGE; ADSORPTION; CONVERSION; HYDROGEN; ENERGY; CONSTRUCTION; PERFORMANCE; SEPARATION;
D O I
10.1021/acs.chemmater.8b04683
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Porous nitrogen-rich covalent organic frameworks (COFs) are most challenging materials for selective CO2 capture, separation, and conversion for a substantive impact on the environment and clean energy application. On the other hand, separation of industrial cyclic congeners (benzene/cyclohexane) by the host-guest interaction through pi-electron-rich and -deficient centers in a COF is the key. On the basis of the strategic design, a triazine-based benzbis(imidazole)-bridged COF (TBICOF) has been synthesized under polycondensation conditions and structurally characterized by various analytical techniques. Because of the presence of a benz-bis(imidazole) ring, TBICOF exhibits permanent stability and porosity in the presence of acid and base monitored by the wide-angle X-ray pattern and N-2 sorption studies. The enhanced CO2 uptake of 377.14 cm(3) g(-1) (73.4 wt %) at 195 K confirms its high affinity toward the framework. CO2 sorption is highly selective over N-2 and CH4 because of very strong interactions between CO2 and triazine and benz-bis(imidazole)-functionalized pore walls of TBICOF as clearly evident from the isosteric heat of adsorption and ideal adsorbed solution theory calculation, which is higher than other reported functionalized metal-organic frameworks or COFs. Interestingly, TBICOF also behaves as a heterogeneous organocatalyst for chemical fixation of CO2 into cyclic carbonates under ambient conditions. The pi-electron-deficient triazine and benz-bis(imidazole) moieties have been utilized for selective sorption and separation of benzene (641.9 cm(3) g(-1)) over cyclohexane (186.2 cm(3) g(-1)). Computational studies based on density functional theory and grand canonical Monte Carlo molecular simulations further support the selectivity of CO2 (over N-2 and CH4) and benzene (over cyclohexane).
引用
收藏
页码:1584 / 1596
页数:13
相关论文
共 68 条
  • [1] New insights into carbon dioxide interactions with benzimidazole-linked polymers
    Altarawneh, Suha
    Behera, S.
    Jena, Puru
    El-Kaderi, Hani M.
    [J]. CHEMICAL COMMUNICATIONS, 2014, 50 (27) : 3571 - 3574
  • [2] [Anonymous], 2009, AM EN FUT TECHN TRAN
  • [3] Porosity, surface area, surface energy, and hydrogen adsorption in nanostructured carbons
    Ansón, A
    Jagiello, J
    Parra, JB
    Sanjuán, ML
    Benito, AM
    Maser, WK
    Martínez, MT
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (40) : 15820 - 15826
  • [4] Potential of microporous metal-organic frameworks for separation of hydrocarbon mixtures
    Bao, Zongbi
    Chang, Ganggang
    Xing, Huabin
    Krishna, Rajamani
    Ren, Qilong
    Chen, Banglin
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (12) : 3612 - 3641
  • [5] Gas storage in porous aromatic frameworks (PAFs)
    Ben, Teng
    Pei, Cuiying
    Zhang, Daliang
    Xu, Jun
    Deng, Feng
    Jing, Xiaofei
    Qiu, Shilun
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (10) : 3991 - 3999
  • [6] A Hafnium-Based Metal Organic Framework as an Efficient and Multifunctional Catalyst for Facile CO2 Fixation and Regioselective and Enantioretentive Epoxide Activation
    Beyzavi, M. Hassan
    Klet, Rachel C.
    Tussupbayev, Samat
    Borycz, Joshua
    Vermeulen, Nicolaas A.
    Cramer, Christopher J.
    Stoddart, J. Fraser
    Hupp, Joseph T.
    Farha, Omar K.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (45) : 15861 - 15864
  • [7] Chemically Stable Multilayered Covalent Organic Nanosheets from Covalent Organic Frameworks via Mechanical Delamination
    Chandra, Suman
    Kandambeth, Sharath
    Biswal, Bishnu P.
    Lukose, Binit
    Kunjir, Shrikant M.
    Chaudhary, Minakshi
    Babarao, Ravichandar
    Heine, Thomas
    Banerjee, Rahul
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (47) : 17853 - 17861
  • [8] Carbon Capture and Sequestration
    Chu, Steven
    [J]. SCIENCE, 2009, 325 (5948) : 1599 - 1599
  • [9] Carbon Dioxide Capture: Prospects for New Materials
    D'Alessandro, Deanna M.
    Smit, Berend
    Long, Jeffrey R.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (35) : 6058 - 6082
  • [10] The direct transformation of carbon dioxide to organic carbonates over heterogeneous catalysts
    Dai, Wei-Li
    Luo, Sheng-Lian
    Yin, Shuang-Feng
    Au, Chak-Tong
    [J]. APPLIED CATALYSIS A-GENERAL, 2009, 366 (01) : 2 - 12