Schordinger electrons interacting with optical gratings: quantum mechanical study of the inverse Smith-Purcell effect

被引:44
作者
Talebi, Nahid [1 ]
机构
[1] Max Planck Inst Solid State Res, Stuttgart Ctr Electron Microscopy, Heisenbergstr 1, D-70569 Stuttgart, Germany
来源
NEW JOURNAL OF PHYSICS | 2016年 / 18卷
关键词
self-consistent simulation; electron; photon; laser accelerator; grating; single-electron wave function; STRONG-FIELD; NEAR-FIELD; LASER; DRIVEN; EMISSION; PHOTOEMISSION; LIGHT; BREMSSTRAHLUNG; MICROSCOPY; PLASMONS;
D O I
10.1088/1367-2630/18/12/123006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Slow swift electrons with low self-inertia interact differently with matter and light in comparison with their relativistic counterparts: they are easily recoiled, reflected, and also diffracted form optical gratings and nanostructures. As a consequence, they can be also better manipulated into the desired shape. For example, they get bunched quite fast in interaction with acceleration gratings in presence of an external electromagnetic radiation, a phenomenon which can be desirable in development of superradiant coherent light sources. Here, I examine the spatiotemporal behavior of pulsed electron wave packets at low energies interacting with pulsed light and optical gratings, using a quantum-mechanical self-consistent numerical toolbox which is introduced here. It will be shown that electron pulses are accelerated very fast in interaction with the near-field of the grating, demanding that a synchronicity condition is met. To prevent the electrons to be transversely deflected from the grating a symmetric double-grating configuration is necessary. It is found that even in this configuration, diffraction due to the interaction of the electron with the standing-wave light inside the gap between the gratings, is a source of defocusing. Moreover, the longitudinal broadening of the electron pulse directly affects the final shape of the electron wave packet due to the occurrence of multiple electron-photon scatterings. These investigations pave the way towards the design of more efficient electron-driven photon sources and accelerators.
引用
收藏
页数:13
相关论文
共 86 条
[21]   Optical Properties of Single Plasmonic Holes Probed with Local Electron Beam Excitation [J].
Coenen, Toon ;
Polman, Albert .
ACS NANO, 2014, 8 (07) :7350-7358
[22]   Secondary beam fragments produced by 200 MeV u-1 12C ions in water and their dose contributions in carbon ion radiotherapy [J].
Gesellschaft für Schwerionenforschung, Planckstr. 1, D-64291 Darmstadt, Germany ;
不详 ;
不详 .
New J. Phys., 2008,
[23]   Boundary effects in Cherenkov radiation [J].
de Abajo, FJG ;
Rivacoba, A ;
Zabala, N ;
Yamamoto, N .
PHYSICAL REVIEW B, 2004, 69 (15) :155420-1
[24]   Strong-field photoemission in nanotip near-fields: from quiver to sub-cycle electron dynamics [J].
Echternkamp, K. E. ;
Herink, G. ;
Yalunin, S. V. ;
Rademann, K. ;
Schaefer, S. ;
Ropers, C. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2016, 122 (04)
[25]   Dielectric laser accelerators [J].
England, R. Joel ;
Noble, Robert J. ;
Bane, Karl ;
Dowell, David H. ;
Ng, Cho-Kuen ;
Spencer, James E. ;
Tantawi, Sami ;
Wu, Ziran ;
Byer, Robert L. ;
Peralta, Edgar ;
Soong, Ken ;
Chang, Chia-Ming ;
Montazeri, Behnam ;
Wolf, Stephen J. ;
Cowan, Benjamin ;
Dawson, Jay ;
Gai, Wei ;
Hommelhoff, Peter ;
Huang, Yen-Chieh ;
Jing, Chunguang ;
McGuinness, Christopher ;
Palmer, Robert B. ;
Naranjo, Brian ;
Rosenzweig, James ;
Travish, Gil ;
Mizrahi, Amit ;
Schachter, Levi ;
Sears, Christopher ;
Werner, Gregory R. ;
Yoder, Rodney B. .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1337-1389
[26]   Physics of laser-driven plasma-based electron accelerators [J].
Esarey, E. ;
Schroeder, C. B. ;
Leemans, W. P. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (03) :1229-1285
[27]   Field-based DGTD/PIC technique for general and stable simulation of interaction between light and electron bunches [J].
Fallahi, Arya ;
Kaertner, Franz .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2014, 47 (23)
[28]   Quantum coherent optical phase modulation in an ultrafast transmission electron microscope [J].
Feist, Armin ;
Echternkamp, Katharina E. ;
Schauss, Jakob ;
Yalunin, Sergey V. ;
Schaefer, Sascha ;
Ropers, Claus .
NATURE, 2015, 521 (7551) :200-+
[29]   IRIDE: Interdisciplinary research infrastructure based on dual electron linacs and lasers [J].
Ferrario, M. ;
Alesini, D. ;
Alessandroni, M. ;
Anania, M. P. ;
Andreas, S. ;
Angelone, M. ;
Arcovito, A. ;
Arnesano, F. ;
Artioli, M. ;
Avaldi, L. ;
Babusci, D. ;
Bacci, A. ;
Balerna, A. ;
Bartalucci, S. ;
Bedogni, R. ;
Bellaveglia, M. ;
Bencivenga, F. ;
Benfatto, M. ;
Biedron, S. ;
Bocci, V. ;
Bolognesi, M. ;
Bolognesi, P. ;
Boni, R. ;
Bonifacio, R. ;
Boscherini, F. ;
Boscolo, M. ;
Bossi, F. ;
Broggi, F. ;
Buonomo, B. ;
Calo, V. ;
Catone, D. ;
Capogni, M. ;
Capone, M. ;
Cassou, K. ;
Castellano, M. ;
Castoldi, A. ;
Catani, L. ;
Cavoto, G. ;
Cherubini, N. ;
Chirico, G. ;
Cestelli-Guidi, M. ;
Chiadroni, E. ;
Chiarella, V. ;
Cianchi, A. ;
Cianci, M. ;
Cimino, R. ;
Ciocci, F. ;
Clozza, A. ;
Collini, M. ;
Colo, G. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2014, 740 :138-146
[30]   SPONTANEOUS AND STIMULATED-EMISSION FROM QUASIFREE ELECTRONS [J].
FRIEDMAN, A ;
GOVER, A ;
KURIZKI, G ;
RUSCHIN, S ;
YARIV, A .
REVIEWS OF MODERN PHYSICS, 1988, 60 (02) :471-535