Schordinger electrons interacting with optical gratings: quantum mechanical study of the inverse Smith-Purcell effect

被引:44
作者
Talebi, Nahid [1 ]
机构
[1] Max Planck Inst Solid State Res, Stuttgart Ctr Electron Microscopy, Heisenbergstr 1, D-70569 Stuttgart, Germany
来源
NEW JOURNAL OF PHYSICS | 2016年 / 18卷
关键词
self-consistent simulation; electron; photon; laser accelerator; grating; single-electron wave function; STRONG-FIELD; NEAR-FIELD; LASER; DRIVEN; EMISSION; PHOTOEMISSION; LIGHT; BREMSSTRAHLUNG; MICROSCOPY; PLASMONS;
D O I
10.1088/1367-2630/18/12/123006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Slow swift electrons with low self-inertia interact differently with matter and light in comparison with their relativistic counterparts: they are easily recoiled, reflected, and also diffracted form optical gratings and nanostructures. As a consequence, they can be also better manipulated into the desired shape. For example, they get bunched quite fast in interaction with acceleration gratings in presence of an external electromagnetic radiation, a phenomenon which can be desirable in development of superradiant coherent light sources. Here, I examine the spatiotemporal behavior of pulsed electron wave packets at low energies interacting with pulsed light and optical gratings, using a quantum-mechanical self-consistent numerical toolbox which is introduced here. It will be shown that electron pulses are accelerated very fast in interaction with the near-field of the grating, demanding that a synchronicity condition is met. To prevent the electrons to be transversely deflected from the grating a symmetric double-grating configuration is necessary. It is found that even in this configuration, diffraction due to the interaction of the electron with the standing-wave light inside the gap between the gratings, is a source of defocusing. Moreover, the longitudinal broadening of the electron pulse directly affects the final shape of the electron wave packet due to the occurrence of multiple electron-photon scatterings. These investigations pave the way towards the design of more efficient electron-driven photon sources and accelerators.
引用
收藏
页数:13
相关论文
共 86 条
[1]   The ALICE experiment at the CERN LHC [J].
Aamodt, K. ;
Quintana, A. Abrahantes ;
Achenbach, R. ;
Acounis, S. ;
Adamova, D. ;
Adler, C. ;
Aggarwal, M. ;
Agnese, F. ;
Rinella, G. Aglieri ;
Ahammed, Z. ;
Ahmad, A. ;
Ahmad, N. ;
Ahmad, S. ;
Akindinov, A. ;
Akishin, P. ;
Aleksandrov, D. ;
Alessandro, B. ;
Alfaro, R. ;
Alfarone, G. ;
Alici, A. ;
Alme, J. ;
Alt, T. ;
Altinpinar, S. ;
Amend, W. ;
Andrei, C. ;
Andres, Y. ;
Andronic, A. ;
Anelli, G. ;
Anfreville, M. ;
Angelov, V. ;
Anzo, A. ;
Anson, C. ;
Anticic, T. ;
Antonenko, V. ;
Antonczyk, D. ;
Antinori, F. ;
Antinori, S. ;
Antonioli, P. ;
Aphecetche, L. ;
Appelshaeuser, H. ;
Aprodu, V. ;
Arba, M. ;
Arcelli, S. ;
Argentieri, A. ;
Armesto, N. ;
Arnaldi, R. ;
Arefiev, A. ;
Arsene, I. ;
Asryan, A. ;
Augustinus, A. .
JOURNAL OF INSTRUMENTATION, 2008, 3
[2]   Operation of a free-electron laser from the extreme ultraviolet to the water window [J].
Ackermann, W. ;
Asova, G. ;
Ayvazyan, V. ;
Azima, A. ;
Baboi, N. ;
Baehr, J. ;
Balandin, V. ;
Beutner, B. ;
Brandt, A. ;
Bolzmann, A. ;
Brinkmann, R. ;
Brovko, O. I. ;
Castellano, M. ;
Castro, P. ;
Catani, L. ;
Chiadroni, E. ;
Choroba, S. ;
Cianchi, A. ;
Costello, J. T. ;
Cubaynes, D. ;
Dardis, J. ;
Decking, W. ;
Delsim-Hashemi, H. ;
Delserieys, A. ;
Di Pirro, G. ;
Dohlus, M. ;
Duesterer, S. ;
Eckhardt, A. ;
Edwards, H. T. ;
Faatz, B. ;
Feldhaus, J. ;
Floettmann, K. ;
Frisch, J. ;
Froehlich, L. ;
Garvey, T. ;
Gensch, U. ;
Gerth, Ch. ;
Goerler, M. ;
Golubeva, N. ;
Grabosch, H.-J. ;
Grecki, M. ;
Grimm, O. ;
Hacker, K. ;
Hahn, U. ;
Han, J. H. ;
Honkavaara, K. ;
Hott, T. ;
Huening, M. ;
Ivanisenko, Y. ;
Jaeschke, E. .
NATURE PHOTONICS, 2007, 1 (06) :336-342
[3]   Electron-Beam-Driven Collective-Mode Metamaterial Light Source [J].
Adamo, G. ;
Ou, J. Y. ;
So, J. K. ;
Jenkins, S. D. ;
De Angelis, F. ;
MacDonald, K. F. ;
Di Fabrizio, E. ;
Ruostekoski, J. ;
Zheludev, N. I. .
PHYSICAL REVIEW LETTERS, 2012, 109 (21)
[4]   Single-electron pulses for ultrafast diffraction [J].
Aidelsburger, M. ;
Kirchner, F. O. ;
Krausz, F. ;
Baum, P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (46) :19714-19719
[5]   Superradiant and stimulated superradiant emission in a prebunched beam free-electron maser [J].
Arbel, M ;
Abramovich, A ;
Eichenbaum, AL ;
Gover, A ;
Kleinman, H ;
Pinhasi, Y ;
Yakover, IM .
PHYSICAL REVIEW LETTERS, 2001, 86 (12) :2561-2564
[6]   Super-radiance in a prebunched beam free electron maser [J].
Arbel, M ;
Eichenbaum, AL ;
Pinhasi, Y ;
Lurie, Y ;
Tecimer, M ;
Abramovich, A ;
Kleinman, H ;
Yakover, IM ;
Gover, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2000, 445 (1-3) :247-252
[7]   Plasmon electron energy-gain spectroscopy [J].
Asenjo-Garcia, A. ;
Garcia de Abajo, F. J. .
NEW JOURNAL OF PHYSICS, 2013, 15
[8]   EXPLICIT INTEGRATION METHOD FOR TIME-DEPENDENT SCHRODINGER EQUATION FOR COLLISION PROBLEMS [J].
ASKAR, A ;
CAKMAK, AS .
JOURNAL OF CHEMICAL PHYSICS, 1978, 68 (06) :2794-2798
[9]   Bremsstrahlung spectra from atoms and ions at low relativistic energies [J].
Avdonina, NB ;
Pratt, RH .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1999, 32 (17) :4261-4276
[10]   Femtosecond few- to single-electron point-projection microscopy for nanoscale dynamic imaging [J].
Bainbridge, A. R. ;
Myers, C. W. Barlow ;
Bryan, W. A. .
STRUCTURAL DYNAMICS-US, 2016, 3 (02)