The formation of the ocean's anthropogenic carbon reservoir

被引:46
作者
Iudicone, Daniele [1 ]
Rodgers, Keith B. [2 ]
Plancherel, Yves [3 ]
Aumont, Olivier [4 ]
Ito, Takamitsu [5 ]
Key, Robert M. [2 ]
Madec, Gurvan [4 ,6 ]
Ishii, Masao [7 ]
机构
[1] Stn Zool Anton Dohrn, I-80121 Naples, Italy
[2] Princeton Univ, AOS Program, Princeton, NJ 08544 USA
[3] Univ Oxford, Dept Earth Sci, Oxford OX1 3AN, England
[4] Univ Paris 06, CNRS, Sorbonne Univ, IRD,MNHN,LOCEAN IPSL, Paris, France
[5] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA
[6] Natl Oceanog Ctr, Southampton SO14 3ZH, Hants, England
[7] Meteorol Res Inst, Oceanog & Geochem Dept, JMA, Tsukuba, Ibaraki 3050052, Japan
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
基金
美国国家科学基金会; 美国海洋和大气管理局; 美国国家航空航天局;
关键词
SOUTHERN-OCEAN; CO2; UPTAKE; CIRCULATION; REPRESENTATION; TRANSPORT; FRAMEWORK; STORAGE; MODEL; LAYER;
D O I
10.1038/srep35473
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The shallow overturning circulation of the oceans transports heat from the tropics to the mid-latitudes. This overturning also influences the uptake and storage of anthropogenic carbon (Cant). We demonstrate this by quantifying the relative importance of ocean thermodynamics, circulation and biogeochemistry in a global biochemistry and circulation model. Almost 2/3 of the Cant ocean uptake enters via gas exchange in waters that are lighter than the base of the ventilated thermocline. However, almost 2/3 of the excess Cant is stored below the thermocline. Our analysis shows that subtropical waters are a dominant component in the formation of subpolar waters and that these water masses essentially form a common Cant reservoir. This new method developed and presented here is intrinsically Lagrangian, as it by construction only considers the velocity or transport of waters across isopycnals. More generally, our approach provides an integral framework for linking ocean thermodynamics with biogeochemistry.
引用
收藏
页数:16
相关论文
共 56 条
  • [1] Globalizing results from ocean in situ iron fertilization studies
    Aumont, O.
    Bopp, L.
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2006, 20 (02)
  • [2] Beckmann A, 1997, J PHYS OCEANOGR, V27, P581, DOI 10.1175/1520-0485(1997)027<0581:AMFIRO>2.0.CO
  • [3] 2
  • [4] BLANKE B, 1993, J PHYS OCEANOGR, V23, P1363, DOI 10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO
  • [5] 2
  • [6] Bolin B., 1958, ATMOSPHERE SEA MOTIO, P130
  • [7] Pathways of anthropogenic carbon subduction in the global ocean
    Bopp, L.
    Levy, M.
    Resplandy, L.
    Sallee, J. B.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (15) : 6416 - 6423
  • [8] Broecker W. S., 1963, SEA, V2, P88
  • [9] NO A CONSERVATIVE WATER-MASS TRACER
    BROECKER, WS
    [J]. EARTH AND PLANETARY SCIENCE LETTERS, 1974, 23 (01) : 100 - 107
  • [10] Subantarctic Mode Water Formation, Destruction, and Export in the Eddy-Permitting Southern Ocean State Estimate
    Cerovecki, Ivana
    Talley, Lynne D.
    Mazloff, Matthew R.
    Maze, Guillaume
    [J]. JOURNAL OF PHYSICAL OCEANOGRAPHY, 2013, 43 (07) : 1485 - 1511