A universal Galois representation attached to modular forms modulo 2

被引:5
作者
Bellaiche, Joel [1 ]
机构
[1] Brandeis Univ, Waltham, MA 02454 USA
关键词
D O I
10.1016/j.crma.2012.04.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be the algebra of Hecke operators acting on mod 2 cusp forms of level 1 and any weight. Nicolas and Serre have determined the structure of A: one has A similar or equal to F-2[[x, y]]. Let G(Q,2) be the Galois group of the maximal extension of Q unramified outside 2 and infinity, and let G be its maximal pro-2-quotient. One constructs a continuous Galois representation r: G -> SL2(A) such that tr r(Frob(p)) = T-p for all odd prime p. One also proves its uniqueness and one studies its irreducibility properties. (C) 2012 Publie par Elsevier Masson SAS pour l'Academie des sciences.
引用
收藏
页码:443 / 448
页数:6
相关论文
共 5 条
[1]  
[Anonymous], 1965, Elements de mathematique. Fasc. XXXI. Algebre commutative. Chapitre 7: Diviseurs
[2]  
Chenevier G., P ADIC ANAL SPACE PS
[3]  
Kani E., 2009, ANN SCI MATH QUEBEC
[4]   Modular forms mod 2: Structure of the Hecke ring [J].
Nicolas, Jean-Louis ;
Serre, Jean-Pierre .
COMPTES RENDUS MATHEMATIQUE, 2012, 350 (9-10) :449-454
[5]   The nilpotence order of the mod 2 Hecke operators [J].
Nicolas, Jean-Louis ;
Serre, Jean-Pierre .
COMPTES RENDUS MATHEMATIQUE, 2012, 350 (7-8) :343-348