Properties of the support of solutions of a class of nonlinear evolution equations

被引:0
作者
Bustamante, Eddye [1 ,2 ]
Urrea, Jose Jimenez [1 ]
机构
[1] Univ Nacl Colombia, Sede Medellin, Colombia
[2] Dept Matemat, AA 3840, Medellin, Colombia
关键词
Korteweg-de Vries equation; nonlinear evolution equations; polynomial differential operator; weighted Sobolev spaces; UNIQUE CONTINUATION PROPERTY; WELL-POSEDNESS; OSTROVSKY EQUATION; WAVES;
D O I
10.1002/mana.202000354
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we consider equations of the form(sic)(t)u + P((sic)(x))u + G(u, (sic)(x)u, ... , (sic)(l)(x)u) = 0,where P is any polynomial without constant term, and G is any polynomial without constant or linear terms. We prove that if u is a sufficiently smooth solution of the equation, such that supp u(0), supp u(T)subset of (-infinity, B] for some B > 0, then there exists R-0 > 0 such that supp u(t) c (-oo, R0] for every t is an element of [0, T]. Then, as an example of the application of this result, we employ it to show a unique continuation principle for the Kawahara equation,(sic)(t)u + (sic)(5)(x)u + (sic)(x)(3)u + u(sic)(x)u = 0,and for the generalized KdV hierarchy(sic)(t)u + (-1)(k+1)(sic)(2k+1) (x )u + G(u, (sic)(x)u, ... , (sic)(x)(2k)u) = 0.
引用
收藏
页码:2357 / 2372
页数:16
相关论文
共 31 条
  • [1] Bourgain J, 1997, INT MATH RES NOTICES, V1997, P437
  • [2] On the support of solutions to the Zakharov-Kuznetsov equation
    Bustamante, Eddye
    Isaza, Pedro
    Mejia, Jorge
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (10) : 2728 - 2736
  • [3] Carleman T., 1939, PROBLEME UNICITE SYS
  • [4] da Silva P., 2007, TEMA TEND MAT APL CO, V8, P463
  • [5] Uniqueness properties of higher order dispersive equations
    Dawson, Liana L.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 236 (01) : 199 - 236
  • [6] Fokas A., TOPICS SOLITON THEOR, P45
  • [7] The IVP for the Benjamin-Ono equation in weighted Sobolev spaces
    Fonseca, German
    Ponce, Gustavo
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (02) : 436 - 459
  • [8] Il'ichev A. T., 1989, Fluid Dynamics, V24, P73, DOI 10.1007/BF01051481
  • [9] Isaza P., 2013, ELECTRON J DIFFER EQ, V246, P1
  • [10] On the support of solutions to the Ostrovsky equation with negative dispersion
    Isaza, Pedro
    Mejia, Jorge
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (06) : 1851 - 1865