Controlling Complexity of Cerebral Cortex Simulations-II: Streamlined Microcircuits

被引:3
作者
Hokkanen, Henri [1 ,2 ]
Andalibi, Vafa [1 ,2 ,3 ]
Vanni, Simo [1 ,2 ]
机构
[1] Univ Helsinki, Clin Neurosci, Neurol, Helsinki 00029, Finland
[2] Helsinki Univ Hosp, Helsinki 00029, Finland
[3] Indiana Univ, Sch Informat Comp & Engn, Bloomington, IN USA
关键词
PYRAMIDAL NEURONS; DYNAMICS; CELLS; INTERNEURONS; NOMENCLATURE; NETWORKS; MODEL;
D O I
10.1162/neco_a_01188
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, Markram et al. (2015) presented a model of the rat somatosensory microcircuit (Markram model). Their model is high in anatomical and physiological detail, and its simulation requires supercomputers. The lack of neuroinformatics and computing power is an obstacle for using a similar approach to build models of other cortical areas or larger cortical systems. Simplified neuron models offer an attractive alternative to high-fidelity Hodgkin-Huxley-type neuron models, but their validity in modeling cortical circuits is unclear. We simplified the Markram model to a network of exponential integrate-and-fire (EIF) neurons that runs on a single CPU core in reasonable time. We analyzed the electrophysiology and the morphology of the Markram model neurons with eFel and NeuroM tools, provided by the Blue Brain Project. We then constructed neurons with few compartments and averaged parameters from the reference model. We used the CxSystem simulation framework to explore the role of short-term plasticity and GABAB and NMDA synaptic conductances in replicating oscillatory phenomena in the Markram model. We show that having a slow inhibitory synaptic conductance (GABAB) allows replication of oscillatory behavior in the high-calcium state. Furthermore, we show that qualitatively similar dynamics are seen even with a reduced number of cell types (from 55 to 17 types). This reduction halved the computation time. Our results suggest that qualitative dynamics of cortical microcircuits can be studied using limited neuroinformatics and computing resources supporting parameter exploration and simulation of cortical systems. The simplification procedure can easily be adapted to studying other microcircuits for which sparse electrophysiological and morphological data are available.
引用
收藏
页码:1066 / 1084
页数:19
相关论文
共 37 条
  • [1] Controlling Complexity of Cerebral Cortex Simulations-I: CxSystem, a Flexible Cortical Simulation Framework
    Andalibi, Vafa
    Hokkanen, Henri
    Vanni, Simo
    [J]. NEURAL COMPUTATION, 2019, 31 (06) : 1048 - 1065
  • [2] Petilla terminology:: nomenclature of features of GABAergic interneurons of the cerebral cortex
    Ascoli, Giorgio A.
    Alonso-Nanclares, Lidia
    Anderson, Stewart A.
    Barrionuevo, German
    Benavides-Piccione, Ruth
    Burkhalter, Andreas
    Buzsaki, Gyoergy
    Cauli, Bruno
    DeFelipe, Javier
    Fairen, Alfonso
    Feldmeyer, Dirk
    Fishell, Gord
    Fregnac, Yves
    Freund, Tamas F.
    Gardner, Daniel
    Gardner, Esther P.
    Goldberg, Jesse H.
    Helmstaedter, Moritz
    Hestrin, Shaul
    Karube, Fuyuki
    Kisvarday, Zoltan F.
    Lambolez, Bertrand
    Lewis, David A.
    Marin, Oscar
    Markram, Henry
    Munoz, Alberto
    Packer, Adam
    Petersen, Carl C. H.
    Rockland, Kathleen S.
    Rossier, Jean
    Rudy, Bernardo
    Somogyi, Peter
    Staiger, Jochen F.
    Tamas, Gabor
    Thomson, Alex M.
    Toledo-Rodriguez, Maria
    Wang, Yun
    West, David C.
    Yuste, Rafael
    [J]. NATURE REVIEWS NEUROSCIENCE, 2008, 9 (07) : 557 - 568
  • [3] The low synaptic release probability in vivo
    Borst, J. Gerard G.
    [J]. TRENDS IN NEUROSCIENCES, 2010, 33 (06) : 259 - 266
  • [4] Adaptive exponential integrate-and-fire model as an effective description of neuronal activity
    Brette, R
    Gerstner, W
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2005, 94 (05) : 3637 - 3642
  • [5] Simulation of networks of spiking neurons:: A review of tools and strategies
    Brette, Romain
    Rudolph, Michelle
    Carnevale, Ted
    Hines, Michael
    Beeman, David
    Bower, James M.
    Diesmann, Markus
    Morrison, Abigail
    Goodman, Philip H.
    Harris, Frederick C., Jr.
    Zirpe, Milind
    Natschlaeger, Thomas
    Pecevski, Dejan
    Ermentrout, Bard
    Djurfeldt, Mikael
    Lansner, Anders
    Rochel, Olivier
    Vieville, Thierry
    Muller, Eilif
    Davison, Andrew P.
    El Boustani, Sami
    Destexhe, Alain
    [J]. JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2007, 23 (03) : 349 - 398
  • [6] Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons
    Brunel, N
    [J]. JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2000, 8 (03) : 183 - 208
  • [7] New insights into the classification and nomenclature of cortical GABAergic interneurons
    DeFelipe, Javier
    Lopez-Cruz, Pedro L.
    Benavides-Piccione, Ruth
    Bielza, Concha
    Larranaga, Pedro
    Anderson, Stewart
    Burkhalter, Andreas
    Cauli, Bruno
    Fairen, Alfonso
    Feldmeyer, Dirk
    Fishell, Gord
    Fitzpatrick, David
    Freund, Tamas F.
    Gonzalez-Burgos, Guillermo
    Hestrin, Shaul
    Hill, Sean
    Hof, Patrick R.
    Huang, Josh
    Jones, Edward G.
    Kawaguchi, Yasuo
    Kisvarday, Zoltan
    Kubota, Yoshiyuki
    Lewis, David A.
    Marin, Oscar
    Markram, Henry
    McBain, Chris J.
    Meyer, Hanno S.
    Monyer, Hannah
    Nelson, Sacha B.
    Rockland, Kathleen
    Rossier, Jean
    Rubenstein, John L. R.
    Rudy, Bernardo
    Scanziani, Massimo
    Shepherd, Gordon M.
    Sherwood, Chet C.
    Staiger, Jochen F.
    Tamas, Gabor
    Thomson, Alex
    Wang, Yun
    Yuste, Rafael
    Ascoli, Giorgio A.
    [J]. NATURE REVIEWS NEUROSCIENCE, 2013, 14 (03) : 202 - 216
  • [8] Fourcaud-Trocmé N, 2003, J NEUROSCI, V23, P11628
  • [9] Dendritic Excitability and Gain Control in Recurrent Cortical Microcircuits
    Hay, Etay
    Segev, Idan
    [J]. CEREBRAL CORTEX, 2015, 25 (10) : 3561 - 3571
  • [10] Modeling single-neuron dynamics and computations: A balance of detail and abstraction
    Herz, Andreas V. M.
    Gollisch, Tim
    Machens, Christian K.
    Jaeger, Dieter
    [J]. SCIENCE, 2006, 314 (5796) : 80 - 85