Self-wrapped Sb/C nanocomposite as anode material for High-performance sodium-ion batteries

被引:139
作者
Duan, Jian [1 ]
Zhang, Wei [1 ]
Wu, Chao [1 ]
Fan, Qingjie [1 ]
Zhang, Wuxing [1 ]
Hu, Xianluo [1 ]
Huang, Yunhui [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mold Technol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium-ion batteries; Antimony anode; Self-wrapping; Chitosan; Electrochemical performance; SUPERIOR RATE CAPABILITY; LONG CYCLE LIFE; CARBON NANOSHEETS; HIGH-CAPACITY; LOW-COST; STORAGE; ENERGY; NANO; NANOCRYSTALS; NANORIBBONS;
D O I
10.1016/j.nanoen.2015.07.021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Self-wrapping is a facile and highly efficient way to realize evenly coating and homogeneous distribution. Ultrasmall antimony (Sb) nanoparticles embedded in three-dimensional (3D) nitrogen-doped porous carbon matrix are fabricated by self-wrapping and controlled growth process with chitosan (CHI) as a self-wrapping precursor. As anode material for sodium-ion battery, the as-obtained Sb/C-CHI nanocomposite shows an initial discharge capacity of 403 mA h g(-1) with Coulombic efficiency of 69.4%, and retains the capacity up to 372 mA h g(-1) after 100 cycles at a current of 500 mA g(-1). A reversible capacity of 138 mA h g(-1) is attained even at a very high current density of 32 A g(-1). This unique Sb/CcH, nanocomposite is a potential anode material for high-performance sodium-ion batteries. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:479 / 487
页数:9
相关论文
共 46 条
[1]   Impact of in situ preparation of CdS filled PVP nano-composite [J].
Abdelghany, A. M. ;
Abdelrazek, E. M. ;
Rashad, D. S. .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2014, 130 :302-308
[2]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[3]   Conductive Rigid Skeleton Supported Silicon as High-Performance Li-Ion Battery Anodes [J].
Chen, Xilin ;
Li, Xiaolin ;
Ding, Fei ;
Xu, Wu ;
Xiao, Jie ;
Cao, Yuliang ;
Meduri, Praveen ;
Liu, Jun ;
Graff, Gordon L. ;
Zhang, Ji-Guang .
NANO LETTERS, 2012, 12 (08) :4124-4130
[4]  
Chinh N.T., 2014, J APPL POLYM SCI, P41690
[5]   Facile synthesis and long cycle life of SnSb as negative electrode material for Na-ion batteries [J].
Darwiche, Ali ;
Sougrati, Moulay T. ;
Fraisse, Bernard ;
Stievano, Lorenzo ;
Monconduit, Laure .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 32 :18-21
[6]   Better Cycling Performances of Bulk Sb in Na-Ion Batteries Compared to Li-Ion Systems: An Unexpected Electrochemical Mechanism [J].
Darwiche, Ali ;
Marino, Cyril ;
Sougrati, Moulay T. ;
Fraisse, Bernard ;
Stievano, Lorenzo ;
Monconduit, Laure .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (51) :20805-20811
[7]   Carbon Nanosheet Frameworks Derived from Peat Moss as High Performance Sodium Ion Battery Anodes [J].
Ding, Jia ;
Wang, Huanlei ;
Li, Zhi ;
Kohandehghan, Alireza ;
Cui, Kai ;
Xu, Zhanwei ;
Zahiri, Beniamin ;
Tan, Xuehai ;
Lotfabad, Elmira Memarzadeh ;
Olsen, Brian C. ;
Mitlin, David .
ACS NANO, 2013, 7 (12) :11004-11015
[8]   Sodium and sodium-ion energy storage batteries [J].
Ellis, Brian L. ;
Nazar, Linda F. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2012, 16 (04) :168-177
[9]   Large-Yield Preparation of High-Electronic-Quatity Graphene by a Langmuir-Schaefer Approach [J].
Gengler, Regis Y. N. ;
Veligura, Alina ;
Enotiadis, Apostolos ;
Diamanti, Evmorfia K. ;
Gournis, Dimitrios ;
Jozsa, Csaba ;
van Wees, Bart J. ;
Rudolf, Petra .
SMALL, 2010, 6 (01) :35-39
[10]   Monodisperse Antimony Nanocrystals for High-Rate Li-ion and Na-ion Battery Anodes: Nano versus Bulk [J].
He, Meng ;
Kraychyk, Kostiantyn ;
Walter, Marc ;
Kovalenko, Maksym V. .
NANO LETTERS, 2014, 14 (03) :1255-1262