The exact solution and integrable properties to the variable-coefficient modified Korteweg-de Vries equation

被引:44
|
作者
Zhang, Yi [1 ]
Li, Jibin [1 ]
Lv, Yi-Neng [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
基金
中国国家自然科学基金;
关键词
Soliton; vc-mKdV equation; Backlund transformation; Lax pairs; Bidirectional wave interaction;
D O I
10.1016/j.aop.2008.04.012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is investigated. With the help of symbolic computation, the N-soliton solution is derived through the Hirota method. Then the bilinear Backlund transformations and Lax pairs are presented. At last, we show some interactions of solitary waves. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3059 / 3064
页数:6
相关论文
共 50 条
  • [31] Orbital stability of a sum of solitons and breathers of the modified Korteweg-de Vries equation
    Semenov, Alexander
    NONLINEARITY, 2022, 35 (08) : 4211 - 4249
  • [32] Soliton-Breather Interaction: The Modified Korteweg-de Vries Equation Framework
    Didenkulova, Ekaterina
    Pelinovsky, Efim
    SYMMETRY-BASEL, 2020, 12 (09):
  • [33] Residual Symmetry of the Alice-Bob Modified Korteweg-de Vries Equation
    Hu, Ya-Hong
    Ma, Zheng-Yi
    Chen, Li
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2019, 71 (05) : 489 - 495
  • [34] Nonlinear dynamics of a soliton gas: Modified Korteweg-de Vries equation framework
    Shurgalina, E. G.
    Pelinovsky, E. N.
    PHYSICS LETTERS A, 2016, 380 (24) : 2049 - 2053
  • [35] A small time solutions for the Korteweg-de Vries equation
    Kutluay, S
    Bahadir, AR
    Özdes, A
    APPLIED MATHEMATICS AND COMPUTATION, 2000, 107 (2-3) : 203 - 210
  • [36] Interaction properties of complex modified Korteweg-de Vries (mKdV) solitons
    Anco, Stephen C.
    Ngatat, Nestor Tchegoum
    Willoughby, Mark
    PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (17) : 1378 - 1394
  • [37] N-SOLITON SOLUTIONS, AUTO-BACKLUND TRANSFORMATIONS AND LAX PAIR FOR A NONISOSPECTRAL AND VARIABLE-COEFFICIENT KORTEWEG-DE VRIES EQUATION VIA SYMBOLIC COMPUTATION
    Li, Li-Li
    Tian, Bo
    Zhang, Chun-Yi
    Zhang, Hai-Qiang
    Li, Juan
    Xu, Tao
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (10): : 2383 - 2393
  • [38] Numerical Algorithms for Solutions of Korteweg-de Vries Equation
    Korkmaz, Alper
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (06) : 1504 - 1521
  • [39] Scattering for the quartic generalised Korteweg-de Vries equation
    Tao, Terence
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 232 (02) : 623 - 651
  • [40] Integrability, lump solutions, breather solutions and hybrid solutions for the (2+1)-dimensional variable coefficient Korteweg-de Vries equation
    Chu, Jingyi
    Chen, Xin
    Liu, Yaqing
    NONLINEAR DYNAMICS, 2024, 112 (01) : 619 - 634