The exact solution and integrable properties to the variable-coefficient modified Korteweg-de Vries equation

被引:44
|
作者
Zhang, Yi [1 ]
Li, Jibin [1 ]
Lv, Yi-Neng [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
基金
中国国家自然科学基金;
关键词
Soliton; vc-mKdV equation; Backlund transformation; Lax pairs; Bidirectional wave interaction;
D O I
10.1016/j.aop.2008.04.012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is investigated. With the help of symbolic computation, the N-soliton solution is derived through the Hirota method. Then the bilinear Backlund transformations and Lax pairs are presented. At last, we show some interactions of solitary waves. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3059 / 3064
页数:6
相关论文
共 50 条
  • [21] Inverse Scattering and Loaded Modified Korteweg-de Vries Equation
    Feckan, Michal
    Urazboev, Gayrat
    Baltaeva, Iroda
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2022, 15 (02): : 174 - 183
  • [22] Infinite Sequence of Conservation Laws and Analytic Solutions for a Generalized Variable-Coefficient Fifth-Order Korteweg-de Vries Equation in Fluids
    Yu Xin
    Gao Yi-Tian
    Sun Zhi-Yuan
    Liu Ying
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 55 (04) : 629 - 634
  • [23] Multi-soliton solutions of the forced variable-coefficient extended Korteweg-de Vries equation arisen in fluid dynamics of internal solitary waves
    Liu, Ying
    Gao, Yi-Tian
    Sun, Zhi-Yuan
    Yu, Xin
    NONLINEAR DYNAMICS, 2011, 66 (04) : 575 - 587
  • [24] An initial-value problem for the modified Korteweg-de Vries equation
    Leach, J. A.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2013, 78 (06) : 1196 - 1213
  • [25] On the uniqueness of multi-breathers of the modified Korteweg-de Vries equation
    Semenov, Alexander
    REVISTA MATEMATICA IBEROAMERICANA, 2023, 39 (04) : 1247 - 1322
  • [26] Investigation of the harmonic composition of the periodic solution of the Korteweg-de Vries equation
    Zaiko, YN
    TECHNICAL PHYSICS LETTERS, 1999, 25 (02) : 126 - 127
  • [27] Nonlinear Dynamics of Solitons for the Vector Modified Korteweg-de Vries Equation
    Fenchenko, V.
    Khruslov, E.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2018, 14 (02) : 153 - 168
  • [28] Dynamics of solitons in a nonintegrable version of the modified Korteweg-de Vries equation
    O. E. Kurkina
    A. A. Kurkin
    E. A. Ruvinskaya
    E. N. Pelinovsky
    T. Soomere
    JETP Letters, 2012, 95 : 91 - 95
  • [29] Investigation of the harmonic composition of the periodic solution of the Korteweg-de Vries equation
    Yu. N. Zaiko
    Technical Physics Letters, 1999, 25 : 126 - 127
  • [30] Exact Solutions for a Coupled Korteweg-de Vries System
    Zuo, Da-Wei
    Jia, Hui-Xian
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (11): : 1053 - 1058