The Useful MAM, a Reasonable Implementation of the Strong λ-Calculus

被引:10
作者
Accattoli, Beniamino [1 ,2 ]
机构
[1] Ecole Polytech, INRIA, Palaiseau, France
[2] Ecole Polytech, LIX, Palaiseau, France
来源
LOGIC, LANGUAGE, INFORMATION, AND COMPUTATION | 2016年 / 9803卷
关键词
D O I
10.1007/978-3-662-52921-8_1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It has been a long-standing open problem whether the strong lambda-calculus is a reasonable computational model, i.e. whether it can be implemented within a polynomial overhead with respect to the number of beta-steps on models like Turing machines or RAM. Recently, Accattoli and Dal Lago solved the problem by means of a new form of sharing, called useful sharing, and realised via a calculus with explicit substitutions. This paper presents a new abstract machine for the strong lambda-calculus based on useful sharing, the Useful Milner Abstract Machine, and proves that it reasonably implements leftmost-outermost evaluation. It provides both an alternative proof that the lambda-calculus is reasonable and an improvement on the technology for implementing strong evaluation.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 28 条
[21]  
Friedman Daniel P., 2007, Higher-Order and Symbolic Computation, V20, P271, DOI 10.1007/S10990-007-9014-0
[22]  
Garcia-Perez A., 2013, 15 INT S PRINCIPLES, P85, DOI DOI 10.1145/2505879.2505887
[23]   A compiled implementation of strong reduction [J].
Grégoire, B ;
Leroy, X .
ACM SIGPLAN NOTICES, 2002, 37 (09) :235-246
[25]  
Sands D, 2002, LECT NOTES COMPUT SC, V2566, P60
[26]  
Sestoft P., 1997, Journal of Functional Programming, V7, P231, DOI 10.1017/S0956796897002712
[27]  
Smith C., 2014, IFL 2014
[28]  
Wand Mitchell, 2007, Higher-Order and Symbolic Computation, V20, P231, DOI 10.1007/s10990-007-9019-8