On inexact generalized proximal methods with a weakened error tolerance criterion

被引:21
|
作者
Kaplan, A [1 ]
Tichatschke, R [1 ]
机构
[1] Univ Trier, Dept Math, D-54286 Trier, Germany
关键词
maximal monotone operators; regularization; Bregman function; proximal point methods; variational inequalities;
D O I
10.1080/02331930410001661217
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Two inexact versions of a Bregman-function-based proximal method for finding a zero of a maximal monotone operator, suggested in [J. Eckstein (1998). Approximate iterations in Bregman-function-based proximal algorithms. Math. programming, 83, 113-123; P. da Silva, J. Eckstein and C. Humes (2001). Rescaling and stepsize selection in proximal methods using separable generalized distances. SIAM J. Optim., 12, 238-261], are considered. For a wide class of Bregman functions, including the standard entropy kernel and all strongly convex Bregman functions, convergence of these methods is proved under an essentially weaker accuracy condition on the iterates than in the original papers. Also the error criterion of a logarithmic-quadratic proximal method, developed in [A. Auslender, M. Teboulle and S. Ben-Tiba (1999). A logarithmic-quadratic proximal method for variational inequalities. Computational Optimization and Applications, 12, 31-40], is relaxed, and convergence results for the inexact version of the proximal method with entropy-like distance functions are described. For the methods mentioned, like in [R.T. Rockafellar (1976). Monotone operators and the proximal point algorithm. SIAM J. Control Optim., 14, 877-898] for the classical proximal point algorithm, only summability of the sequence of error vector norms is required.
引用
收藏
页码:3 / 17
页数:15
相关论文
共 21 条
  • [1] INEXACT GENERALIZED PROXIMAL ALTERNATING DIRECTION METHODS OF MULTIPLIERS AND THEIR CONVERGENCE RATES
    Sun, Liming
    Jiang, Zhikai
    Li, Xinxin
    PACIFIC JOURNAL OF OPTIMIZATION, 2018, 14 (01): : 101 - 124
  • [2] INEXACT PROXIMAL POINT METHODS FOR VARIATIONAL INEQUALITY PROBLEMS
    Burachik, Regina
    Dutta, Joydeep
    SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (05) : 2653 - 2678
  • [3] Inexact Proximal Point Methods in Metric Spaces
    Zaslavski, Alexander J.
    SET-VALUED AND VARIATIONAL ANALYSIS, 2011, 19 (04) : 589 - 608
  • [4] Error bounds for proximal point subproblems and associated inexact proximal point algorithms
    Solodov, MV
    Svaiter, BF
    MATHEMATICAL PROGRAMMING, 2000, 88 (02) : 371 - 389
  • [5] An inexact proximal point method for solving generalized fractional programs
    Strodiot, Jean-Jacques
    Crouzeix, Jean-Pierre
    Ferland, Jacques A.
    Nguyen, Van Hien
    JOURNAL OF GLOBAL OPTIMIZATION, 2008, 42 (01) : 121 - 138
  • [6] An inexact proximal point method for solving generalized fractional programs
    Jean-Jacques Strodiot
    Jean-Pierre Crouzeix
    Jacques A. Ferland
    Van Hien Nguyen
    Journal of Global Optimization, 2008, 42 : 121 - 138
  • [7] Convergence of inexact Newton methods for generalized equations
    Dontchev, A. L.
    Rockafellar, R. T.
    MATHEMATICAL PROGRAMMING, 2013, 139 (1-2) : 115 - 137
  • [8] Inexact Proximal Point Methods for Multiobjective Quasiconvex Minimization on Hadamard Manifolds
    Papa Quiroz, Erik Alex
    Baygorrea Cusihuallpa, Nancy
    Maculan, Nelson
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2020, 186 (03) : 879 - 898
  • [9] A New Inexactness Criterion for Approximate Logarithmic-Quadratic Proximal Methods
    Abdellah Bnouhachem School of Management Science and Engineering
    NumericalMathematicsAJournalofChineseUniversities(EnglishSeries), 2006, (01) : 74 - 81
  • [10] Inexact Proximal Point Methods for Multiobjective Quasiconvex Minimization on Hadamard Manifolds
    Erik Alex Papa Quiroz
    Nancy Baygorrea Cusihuallpa
    Nelson Maculan
    Journal of Optimization Theory and Applications, 2020, 186 : 879 - 898