GLOBAL FLUCTUATIONS FOR LINEAR STATISTICS OF β-JACOBI ENSEMBLES

被引:34
作者
Dumitriu, Ioana [1 ]
Paquette, Elliot [1 ]
机构
[1] Univ Washington, Dept Math, Box 354350, Seattle, WA 98195 USA
关键词
Random matrices; eigenvalues; Jacobi ensemble; linear statistics; CENTRAL-LIMIT-THEOREM; RANDOM MATRICES; EIGENVALUES; DISTRIBUTIONS; UNIVERSALITY; PRODUCT; CLT;
D O I
10.1142/S201032631250013X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the global fluctuations for linear statistics of the form Sigma(n)(i=1) f (lambda(i)) as n -> infinity, for C-1 functions f, and lambda(1),...,lambda(n) being the eigenvalues of a (general) beta-Jacobi ensemble. The fluctuation from the mean (Sigma(n)(i=1) f (lambda(i)) - E Sigma(n)(i=1) f (lambda(i))) turns out to be given asymptotically by a Gaussian process. We compute the covariance matrix for the process and show that it is diagonalized by a shifted Chebyshev polynomial basis; in addition, we analyze the deviation from the predicted mean for polynomial test functions, and we obtain a law of large numbers.
引用
收藏
页数:60
相关论文
共 53 条
[1]  
Abramowitz M, 1984, HDB MATH FUNCTIONS F
[2]   A CLT for a band matrix model [J].
Anderson, GW ;
Zeitouni, O .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 134 (02) :283-338
[3]  
[Anonymous], THESIS
[4]  
[Anonymous], SPRINGER SERIES STAT
[5]  
[Anonymous], PREPRINT
[6]  
[Anonymous], 1982, ASPECTS MULTIVARIATE
[7]  
[Anonymous], 2010, LONDON MATH SOC MONO
[8]  
[Anonymous], INT MATH RES NOT
[9]  
[Anonymous], 2004, RANDOM MATRICES
[10]  
[Anonymous], 2003, THESIS MIT