Experimental investigation on photothermal properties of nanofluids for direct absorption solar thermal energy systems

被引:157
|
作者
He, Qinbo [1 ,2 ]
Wang, Shuangfeng [1 ]
Zeng, Shequan [1 ]
Zheng, Zhaozhi [2 ]
机构
[1] S China Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Guangzhou 510641, Guangdong, Peoples R China
[2] Shunde Polytech, Guangdong Univ Heat Pump Engn Technol Dev Ctr, Foshan 528333, Guangdong, Peoples R China
关键词
Nanofluids; Solar energy; Photothermal properties; Transmittance; Extinction coefficients; NANOHORN-BASED NANOFLUIDS; DISPERSION BEHAVIOR; OPTICAL-PROPERTIES; CONDUCTIVITY; PERFORMANCE; SUSPENSIONS; ENHANCEMENT; EFFICIENCY;
D O I
10.1016/j.enconman.2013.04.019
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this article, Cu-H2O nanofluids were prepared through two-step method. The transmittance of nanofluids over solar spectrum (250-2500 nm) was measured by the UV-Vis-NIR spectrophotometer based on integrating sphere principle. The factors influencing transmittance of nanofluids, such as particle size, mass fraction and optical path were investigated. The extinction coefficients measured experimentally were compared with the theoretical calculation value. Meanwhile, the photothermal properties of nanofluids were also investigated. The experimental results show that the transmittance of Cu-H2O nanofluids is much less than that of deionized water, and decreases with increasing nanoparticle size, mass fraction and optical depth. The highest temperature of Cu-H2O nanofluids (0.1 wt.%) can increased up to 25.3% compared with deionized water. The good absorption ability of Cu-H2O nanofluids for solar energy indicates that it is suitable for direct absorption solar thermal energy systems. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:150 / 157
页数:8
相关论文
共 50 条
  • [1] EXPERIMENTAL INVESTIGATION ON SOLAR THERMAL PROPERTIES OF MAGNETIC NANOFLUIDS FOR DIRECT ABSORPTION SOLAR COLLECTOR
    He, Qinbo
    Yan, Geni
    Wang, shuangfeng
    PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON MICRO/NANOSCALE HEAT AND MASS TRANSFER, 2016, VOL 1, 2016,
  • [2] Thermo-optical properties of partially unzipped multiwalled carbon nanotubes dispersed nanofluids for direct absorption solar thermal energy systems
    Shende, Rashmi Chandrabhan
    Ramaprabhu, S.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 157 : 117 - 125
  • [3] Experimental investigation on the photothermal conversion performance of cuttlefish ink nanofluids for direct absorption solar collectors
    Zhu, Wenlei
    Zuo, Xiahua
    Ding, Yumei
    Yan, Hua
    An, Ying
    Yang, Weimin
    APPLIED THERMAL ENGINEERING, 2023, 221
  • [4] Experimental investigation on photothermal conversion performance of MWCNT-DW/EG nanofluids for low-temperature direct absorption solar thermal energy systems
    Sun, Bin
    Xu, Xinjie
    Yang, Di
    Li, Hongwei
    APPLIED THERMAL ENGINEERING, 2023, 230
  • [5] Magnetic Photothermal Nanofluids with Excellent Reusability for Direct Absorption Solar Collectors
    Wang, Debing
    Wang, Lingling
    Zhu, Guihua
    Yu, Wei
    Zeng, Jia
    Yu, Xiaoxiao
    Xie, Huaqing
    Xian, Guangwei
    Li, Qiang
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (08): : 3860 - 3868
  • [6] Experimental investigation on radiation characteristic of nanofluids for direct absorption solar collectors
    He, Qinbo
    CHEMICAL, MATERIAL AND METALLURGICAL ENGINEERING III, PTS 1-3, 2014, 881-883 : 1095 - 1100
  • [7] Analytical modeling and experimental investigation on optical properties of new class of nanofluids (Al2O3-CuO binary nanofluids) for direct absorption solar thermal energy
    Menbari, Amir
    Alemrajabi, Ali Akbar
    OPTICAL MATERIALS, 2016, 52 : 116 - 125
  • [8] The enhanced photothermal characteristics of plasmonic ZrC/TiN composite nanofluids for direct absorption solar collectors
    Wen, Jin
    Chang, Qingchao
    Zhu, Jishi
    Cui, Rui
    He, Cheng
    Yan, Xinxing
    Li, Xiaoke
    RENEWABLE ENERGY, 2023, 206 : 676 - 685
  • [9] Characterization of Thermal Radiative Properties of Nanofluids for Selective Absorption of Solar Radiation
    Zhu, Qunzhi
    Cui, Yun
    Mu, Lijuan
    Tang, Liqing
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2013, 34 (12) : 2307 - 2321
  • [10] Experimental investigation of β-cyclodextrin modified carbon nanotubes nanofluids for solar energy systems: Stability, optical properties and thermal conductivity
    Li, Xiaoke
    Zou, Changjun
    Chen, Wenjing
    Lei, Xinyu
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 157 : 572 - 579