A Mayer-Vietoris theorem for the Kauffman bracket skein module

被引:3
作者
Lofaro, WF [1 ]
机构
[1] Boise State Univ, Dept Math & Comp Sci, Boise, ID 83725 USA
关键词
skein module; 3-manifold;
D O I
10.1142/S0218216599000468
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The nth relative Kauffman bracket skein modules are defined and two theorems are given relating them to the Kauffman bracket skein module of a 3-manifold. The first theorem covers the case when the 3-manifold is split along a separating closed orientable surface and the second theorem addresses the case when. the surface is nonseparating.
引用
收藏
页码:721 / 729
页数:9
相关论文
共 10 条
[1]   Topological quantum field theories derived from the Kauffman bracket [J].
Blanchet, C ;
Habegger, N ;
Masbaum, G ;
Vogel, P .
TOPOLOGY, 1995, 34 (04) :883-927
[3]  
Hoste, 1993, J KNOT THEOR RAMIF, V02, P321
[4]   THE KAUFFMAN BRACKET SKEIN MODULE OF S(1)XS(2) [J].
HOSTE, J ;
PRZYTYCKI, JH .
MATHEMATISCHE ZEITSCHRIFT, 1995, 220 (01) :65-73
[5]  
Hoste J., 1990, KNOTS 90, P363
[6]   A POLYNOMIAL INVARIANT FOR KNOTS VIA VONNEUMANN-ALGEBRAS [J].
JONES, VFR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (01) :103-111
[7]  
Kauffman L. H., 1994, ANN MATH STUDIES
[8]  
KAUFFMAN LH, 1987, TOPOLOGY, V26, P395
[9]  
Lickorish W. B. R., 1993, J KNOT THEOR RAMIF, V2, P171
[10]  
Przytycki, 1991, B POL ACAD SCI, V39, P91