Device Scaling Considerations for Nanophotonic CMOS Global Interconnects

被引:36
|
作者
Manipatruni, Sasikanth [1 ]
Lipson, Michal [2 ,3 ]
Young, Ian A. [1 ]
机构
[1] Intel Corp, Components Res, Hillsboro, OR 97124 USA
[2] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14850 USA
[3] Kavli Inst Cornell, Ithaca, NY 14853 USA
关键词
Coupled resonators; integrated optics devices; integrated optoelectronic circuits; switching; SILICON ELECTROOPTIC SWITCH; HIGH-SPEED; WAVE-GUIDES; LOW-POWER; BANDWIDTH; PHOTODETECTORS; ELECTRONICS; TRANSCEIVER; TECHNOLOGY; COMPACT;
D O I
10.1109/JSTQE.2013.2239262
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce an analytical framework to understand the path for scaling nanophotonic interconnects to meet the energy and footprint requirements of CMOS global interconnects. We derive the device requirements for sub-100 fJ/cm/bit interconnects including tuning power, serialization-deserialization energy, and optical insertion losses. Using CMOS with integrated nanophotonics as an example platform, we derive the energy/bit, linear, and areal bandwidth density of optical interconnects. We also derive the targets for device performance which indicate the need for continued improvements in insertion losses (<8 dB), laser efficiency, operational speeds (>40 Gb/s), tuning power (<100 mu W/nm), serialization-deserialization (<10 fJ/bit/Operation), and necessity for spectrally selective devices with wavelength multiplexing (>6 channels).
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Voltage scaling - a novel approach for crosstalk reduction in global VLSI interconnects
    Kaushik, B. K.
    Sarkar, S.
    Agarwal, R. P.
    Joshi, R. C.
    MICROELECTRONICS INTERNATIONAL, 2007, 24 (01) : 40 - 45
  • [32] A NOVEL-APPROACH TO SILICON GATE CMOS DEVICE SCALING
    KING, JH
    SOLID-STATE ELECTRONICS, 1983, 26 (09) : 879 - &
  • [33] Impact of millisecond anneals on CMOS scaling - A device simulation study
    Thirupapauliyur, Sunderraj
    Sixteenth Biennial University/Government/Industry Microelectronics Symposium, Proceedings, 2006, : 159 - 160
  • [34] Variation-Aware Adaptive Tuning for Nanophotonic Interconnects
    Wu, Rui
    Chen, Chin-Hui
    Li, Cheng
    Huang, Tsung-Ching
    Lan, Fan
    Zhang, Chong
    Pan, Yun
    Bowers, John E.
    Beausoleil, Raymond G.
    Cheng, Kwang-Ting
    2015 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD), 2015, : 487 - 493
  • [35] On-chip Nanophotonic Devices for Optical Communication and Interconnects
    Kumar, Mukesh
    2018 3RD INTERNATIONAL CONFERENCE ON MICROWAVE AND PHOTONICS (ICMAP), 2018,
  • [36] Integration of Nanophotonic Devices for On-Chip Optical Interconnects
    Assefa, Solomon
    Xia, Fengnian
    Bedell, S. W.
    Zhang, Ying
    Topuria, Teya
    Rice, Philip M.
    Vlasov, Yurii A.
    2009 14TH OPTOELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC 2009), 2009, : 236 - 236
  • [37] Current sensing techniques for global interconnects in very deep submicron(VDSM) CMOS
    Maheshwari, A
    Burleson, W
    IEEE COMPUTER SOCIETY WORKSHOP ON VLSI 2001, PROCEEDINGS, 2001, : 66 - 70
  • [38] A nanophotonic solar thermophotovoltaic device
    Lenert, Andrej
    Bierman, David M.
    Nam, Youngsuk
    Chan, Walker R.
    Celanovic, Ivan
    Soljacic, Marin
    Wang, Evelyn N.
    NATURE NANOTECHNOLOGY, 2014, 9 (02) : 126 - 130
  • [39] A nanophotonic solar thermophotovoltaic device
    Lenert A.
    Bierman D.M.
    Nam Y.
    Chan W.R.
    Celanović I.
    Soljačić M.
    Wang E.N.
    Nature Nanotechnology, 2014, 9 (2) : 126 - 130
  • [40] Impact of Dimensional Scaling and Size Effects on Beyond CMOS All-Spin Logic Interconnects
    Iraei, Rouhollah Mousavi
    Bonhomme, Phillip
    Kani, Nickvash
    Manipatruni, Sasikanth
    Nikonov, Dmitri E.
    Young, Ian A.
    Naeemi, Azad
    2014 IEEE INTERNATIONAL INTERCONNECT TECHNOLOGY CONFERENCE / ADVANCED METALLIZATION CONFERENCE (IITC/AMC), 2014, : 353 - 355