Hyperspectral Image Super-Resolution via Intrafusion Network

被引:63
|
作者
Hu, Jing [1 ]
Jia, Xiuping [2 ]
Li, Yunsong [3 ]
He, Gang [3 ]
Zhao, Minghua [1 ]
机构
[1] Xian Univ Technol, Sch Comp Sci & Engn, Shaanxi Key Lab Network Comp & Secur Technol, Xian 710048, Peoples R China
[2] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
[3] Xidian Univ, State Key Lab Integrated Serv Network, Xian 710071, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2020年 / 58卷 / 10期
基金
中国国家自然科学基金;
关键词
Spatial resolution; Convolution; Image reconstruction; Hyperspectral imaging; Convolutional neural networks; Hyperspectral image (HIS); intrafusion; spectral difference; super-resolution (SR); NONNEGATIVE MATRIX FACTORIZATION; RESOLUTION;
D O I
10.1109/TGRS.2020.2982940
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This article presents an intrafusion network (IFN) for hyperspectral image (HSI) super-resolution (SR). Given that the HSI is a 3-D data cube with both the spatial information and the spectral information, the key challenge to construct HSI SR is how to efficiently exploit the spectral information among consecutive low-resolution (LR) bands, besides the spatial information. The proposed IFN consists of three modules, including the spectral difference module, the parallel convolution module, and the intrafusion module, which directly utilizes both the spatial information and the spectral information for reconstructing the high-resolution HSI. Different from most of the existed methods that tackle the spatial and spectral information separately, the proposed spatialspectral utilization is achieved in one integrated network, which opens up a new way for HSI SR. Meanwhile, applications of this three modules strategy (first spectral difference, then parallel convolution, and finally, intrafusion) on both the conventional convolutional neural network and the residual network with deeper depth have shown the generalization capacity of this proposal. Experimental results and data analysis demonstrate the effectiveness of the proposed method using three hyperspectral data sets.
引用
收藏
页码:7459 / 7471
页数:13
相关论文
共 50 条
  • [41] Difference Value Network for Image Super-Resolution
    Jiang, Zetao
    Pi, Kui
    Huang, Yongsong
    Qian, Yi
    Zhang, Shaoqin
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1070 - 1074
  • [42] Transferable Multiple Subspace Learning for Hyperspectral Image Super-Resolution
    Bu, Yuanyang
    Zhao, Yongqiang
    Xue, Jize
    Yao, Jiaxin
    Chan, Jonathan Cheung-Wai
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [43] Interactformer: Interactive Transformer and CNN for Hyperspectral Image Super-Resolution
    Liu, Yaoting
    Hu, Jianwen
    Kang, Xudong
    Luo, Jing
    Fan, Shaosheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [44] Group Shuffle and Spectral-Spatial Fusion for Hyperspectral Image Super-Resolution
    Wang, Xinya
    Cheng, Yingsong
    Mei, Xiaoguang
    Jiang, Junjun
    Ma, Jiayi
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2022, 8 : 1223 - 1236
  • [45] Hyperspectral Image Super-Resolution: Task-Based Evaluation
    Kawulok, Michal
    Kowaleczko, Pawel
    Ziaja, Maciej
    Nalepa, Jakub
    Kostrzewa, Daniel
    Latini, Daniele
    De Santis, Davide
    Salvucci, Giorgia
    Petracca, Ilaria
    Pegna, Valeria La
    Bartalis, Zoltan
    Frate, Fabio Del
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 18949 - 18966
  • [46] Model Inspired Autoencoder for Unsupervised Hyperspectral Image Super-Resolution
    Liu, Jianjun
    Wu, Zebin
    Xiao, Liang
    Wu, Xiao-Jun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [47] Hyperspectral Image Spatial Super-Resolution via 3D Full Convolutional Neural Network
    Mei, Shaohui
    Yuan, Xin
    Ji, Jingyu
    Zhang, Yifan
    Wan, Shuai
    Du, Qian
    REMOTE SENSING, 2017, 9 (11)
  • [48] Recurrent Embedded Hourglass Network for Single Image Super-Resolution
    Liu, Nanyan
    Gao, Guangpu
    Xu, Xinyu
    IEEE ACCESS, 2020, 8 : 166176 - 166183
  • [49] Deep Stereoscopic Image Super-Resolution via Interaction Module
    Lei, Jianjun
    Zhang, Zhe
    Fan, Xiaoting
    Yang, Bolan
    Li, Xinxin
    Chen, Ying
    Huang, Qingming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (08) : 3051 - 3061
  • [50] Remote Sensing Hyperspectral Image Super-Resolution via Multidomain Spatial Information and Multiscale Spectral Information Fusion
    Chen, Chi
    Wang, Yongcheng
    Zhang, Yuxi
    Zhao, Zhikang
    Feng, Hao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 16