The geometry of generalized force matching and related information metrics in coarse-graining of molecular systems

被引:33
|
作者
Kalligiannaki, Evangelia [1 ]
Harmandaris, Vagelis [1 ,2 ]
Katsoulakis, Markos A. [3 ]
Plechac, Petr [4 ]
机构
[1] Univ Crete, Dept Math & Appl Math, Iraklion 70013, Greece
[2] Fdn Res & Technol Hellas, FORTH, Inst Appl & Computat Math, GR-71110 Iraklion, Greece
[3] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[4] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2015年 / 143卷 / 08期
关键词
FREE-ENERGY; POLYMER MELTS; SIMULATION; DYNAMICS; POLYSTYRENE; REDUCTION; ROUSE; BACK;
D O I
10.1063/1.4928857
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using the probabilistic language of conditional expectations, we reformulate the force matching method for coarse-graining of molecular systems as a projection onto spaces of coarse observables. A practical outcome of this probabilistic description is the link of the force matching method with thermodynamic integration. This connection provides a way to systematically construct a local mean force and to optimally approximate the potential of mean force through force matching. We introduce a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (e.g., reaction coordinates, end-to-end length of chains). Furthermore, we study the equivalence of force matching with relative entropy minimization which we derive for general non-linear coarse graining maps. We present in detail the generalized force matching condition through applications to specific examples in molecular systems. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Adversarial-residual-coarse-graining: Applying machine learning theory to systematic molecular coarse-graining
    Durumeric, Aleksander E. P.
    Voth, Gregory A.
    JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (12):
  • [42] Information-theoretic approach to coarse-graining and multiscale simulations
    Pritchard-Bell, Ari
    Carmichael, Scott
    Chaimovich, Aviel
    Shell, M. Scott
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [43] Impact of coarse-graining upon information content and thermodynamic properties
    Noid, William
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [44] Phase field crystals as a coarse-graining in time of molecular dynamics
    Tupper, P. F.
    Grant, M.
    EPL, 2008, 81 (04)
  • [45] Graph-Based Approach to Systematic Molecular Coarse-Graining
    Webb, Michael A.
    Delannoy, Jean-Yves
    de Pablo, Juan J.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (02) : 1199 - 1208
  • [46] Coarse-graining molecular models with machine learning and experimental data
    Clementi, Cecilia
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [47] COARSE-GRAINING MODELS FOR MOLECULAR DYNAMICS SIMULATIONS OF FCC METALS
    Delafrouz, Pourya
    Pishkenari, Hossein Nejat
    JOURNAL OF THEORETICAL AND APPLIED MECHANICS, 2018, 56 (03) : 601 - 614
  • [48] TWO COARSE-GRAINING STUDIES OF STOCHASTIC MODELS IN MOLECULAR BIOLOGY
    Kramer, Peter R.
    Latorre, Juan C.
    Khan, Adnan A.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2010, 8 (02) : 481 - 517
  • [49] Systematic coarse-graining of molecular models by the Newton inversion method
    Lyubartsev, Alexander
    Mirzoev, Alexander
    Chen, LiJun
    Laaksonen, Aatto
    FARADAY DISCUSSIONS, 2010, 144 : 43 - 56
  • [50] A coarse-graining approach to model molecular liquids for mesoscale problems
    Zerze, Hasan
    Gupta, Ayush
    Baksi, Atanu
    Chakraborty, Dipayan
    Vekilov, Peter G.
    Rimer, Jeffrey D.
    Zerze, Gul H.
    AICHE JOURNAL, 2025, 71 (03)