The geometry of generalized force matching and related information metrics in coarse-graining of molecular systems

被引:33
|
作者
Kalligiannaki, Evangelia [1 ]
Harmandaris, Vagelis [1 ,2 ]
Katsoulakis, Markos A. [3 ]
Plechac, Petr [4 ]
机构
[1] Univ Crete, Dept Math & Appl Math, Iraklion 70013, Greece
[2] Fdn Res & Technol Hellas, FORTH, Inst Appl & Computat Math, GR-71110 Iraklion, Greece
[3] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[4] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2015年 / 143卷 / 08期
关键词
FREE-ENERGY; POLYMER MELTS; SIMULATION; DYNAMICS; POLYSTYRENE; REDUCTION; ROUSE; BACK;
D O I
10.1063/1.4928857
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using the probabilistic language of conditional expectations, we reformulate the force matching method for coarse-graining of molecular systems as a projection onto spaces of coarse observables. A practical outcome of this probabilistic description is the link of the force matching method with thermodynamic integration. This connection provides a way to systematically construct a local mean force and to optimally approximate the potential of mean force through force matching. We introduce a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (e.g., reaction coordinates, end-to-end length of chains). Furthermore, we study the equivalence of force matching with relative entropy minimization which we derive for general non-linear coarse graining maps. We present in detail the generalized force matching condition through applications to specific examples in molecular systems. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Variational approach to coarse-graining of generalized gradient flows
    Manh Hong Duong
    Lamacz, Agnes
    Peletier, Mark A.
    Sharma, Upanshu
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (04)
  • [22] Coarse-graining Hamiltonian systems using WSINDy
    Messenger, Daniel A.
    Burby, Joshua W.
    Bortz, David M.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [23] Coarse-graining in chaotic lattice dynamical systems
    Marcq, P
    Chaté, H
    SLOW DYNAMICS IN COMPLEX SYSTEMS, 1999, 469 : 313 - 314
  • [24] Coarse-graining in simulations of multicomponent polymer systems
    Sethuraman, Vaidyanathan
    Nguyen, Bryan H.
    Ganesan, Venkat
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (24):
  • [25] A multiscale coarse-graining method for biomolecular systems
    Izvekov, S
    Voth, GA
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (07): : 2469 - 2473
  • [26] Information loss in coarse-graining of stochastic particle dynamics
    Katsoulakis, MA
    Trashorras, J
    JOURNAL OF STATISTICAL PHYSICS, 2006, 122 (01) : 115 - 135
  • [27] Coarse-graining electrons: Nonreactive many-body force fields for molecular dynamics
    Head-Gordon, Teresa
    Das, Akshaya
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [28] Information Loss in Coarse-Graining of Stochastic Particle Dynamics
    Markos A. Katsoulakis
    José Trashorras
    Journal of Statistical Physics, 2006, 122 (1) : 115 - 135
  • [29] Coarse-graining molecular dynamics: stochastic models with non-Gaussian force distributions
    Radek Erban
    Journal of Mathematical Biology, 2020, 80 : 457 - 479
  • [30] Coarse-graining molecular dynamics: stochastic models with non-Gaussian force distributions
    Erban, Radek
    JOURNAL OF MATHEMATICAL BIOLOGY, 2020, 80 (1-2) : 457 - 479