Loop-fusion cohomology and transgression

被引:2
作者
Kottke, Chris [1 ]
Melrose, Richard B. [2 ]
机构
[1] Northeastern Univ, Dept Math, Boston, MA 02115 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
BUNDLES; SPACES; GERBES;
D O I
10.4310/MRL.2015.v22.n4.a11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
'Loop-fusion cohomology' is defined on the continuous loop space of a manifold in terms of. Cech cochains satisfying two multiplicative conditions with respect to the fusion and figure-of-eight products on loops. The main result is that these cohomology groups, with coefficients in an abelian group, are isomorphic to those of the manifold and the transgression homomorphism factors through the isomorphism.
引用
收藏
页码:1177 / 1192
页数:16
相关论文
共 11 条
[1]  
[Anonymous], 2005, PREPRINT
[2]   HOLONOMY AND PATH STRUCTURES IN GENERAL-RELATIVITY AND YANG-MILLS THEORY [J].
BARRETT, JW .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1991, 30 (09) :1171-1215
[3]   The geometry of degree-4 characteristic classes and of line bundles on loop spaces .2. [J].
Brylinski, JL ;
McLaughlin, DA .
DUKE MATHEMATICAL JOURNAL, 1996, 83 (01) :105-139
[4]  
Caetano A, 1994, Internat. J. Math., V5, P835
[5]  
Godement R., 1973, ACTUALITES SCI IND, V1252, pXIII
[6]  
Kottke C., 2013, ARXIV130902102013
[7]   Higgs fields, bundle gerbes and string structures [J].
Murray, MK ;
Stevenson, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 243 (03) :541-555
[8]  
Teleman M. C., 1963, ANN MAT PUR APPL, V61, P379
[9]  
Waldorf K., ASIAN J MAT IN PRESS
[10]  
Waldorf K., 2012, CAH TOPOL GEOM DIFFE, V53, P162