Three solutions for a Schrodinger-Kirchhoff type equation involving nonlocal fractional integro-defferential operators

被引:11
作者
Azroul, Elhoussine [1 ]
Benkirane, Abdelmoujib [1 ]
Srati, Mohammed [1 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Fac Sci Dhar El Mahraz, Lab Math Anal & Applicat, Fes, Morocco
关键词
Nonlocal Schrodinger-Kirchhoff type equation; Fractional integro-defferential operators; Fractional Sobolev spaces; Three critical points theorem; POSITIVE SOLUTIONS; MULTIPLICITY; LAPLACIAN;
D O I
10.1007/s11868-020-00331-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the existence of three weak solutions in a fractional Sobolev space for a Schrodinger-Kirchhoff type equation, driven by a nonlocal integro-differential operator: M(integral(RN) integral(RN) |u(x) - u(y)|K-p(x - y)dxdy + integral(RN) V(x)|u|(p)dx) (L-p(K) u + V(x)|u|(p-2)u) = lambda f (x, u) + mu g(x, u) in R-N. The technical approach is mainly based on a three critical points theorem.
引用
收藏
页码:1915 / 1932
页数:18
相关论文
共 37 条
[1]  
Adams R.A., 2003, Sobolev spaces
[2]   Positive solutions for a quasilinear elliptic equation of Kirchhoff type [J].
Alves, CO ;
Corrêa, FJSA ;
Ma, TF .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) :85-93
[3]   Existence and multiplicity of solutions for fractional p(x, .)-Kirchhoff-type problems in RN [J].
Azroul, E. ;
Benkirane, A. ;
Shimi, M. .
APPLICABLE ANALYSIS, 2021, 100 (09) :2029-2048
[4]   THREE SOLUTIONS FOR A KIRCHHOFF-TYPE PROBLEM INVOLVING NONLOCAL FRACTIONAL p-LAPLACIAN [J].
Azroul, E. ;
Benkirane, A. ;
Srati, M. .
ADVANCES IN OPERATOR THEORY, 2019, 4 (04) :821-822
[5]  
Azroul E, 2020, MOROC J PURE APPL AN, DOI 10.2478/mjpaa-2019-0010
[6]  
AZROUL E, 2019, APPL ANAL 0925
[7]   Nonlinear Diffusion of Dislocation Density and Self-Similar Solutions [J].
Biler, Piotr ;
Karch, Grzegorz ;
Monneau, Regis .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 294 (01) :145-168
[8]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[9]   A critical point theorem via the Ekeland variational principle [J].
Bonanno, Gabriele .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (05) :2992-3007
[10]  
Brezis H, 2011, UNIVERSITEXT, P1, DOI 10.1007/978-0-387-70914-7_1