A System for Real-Time Estimation of Joint Torque with Evoked EMG under Electrical Stimulation

被引:2
作者
Li, Zhan [1 ]
Hayashibe, Mitsuhiro
Andreu, David
Guiraud, David
机构
[1] Univ Montpellier 2, INRIA DEMAR Team, Montpellier, France
来源
REPLACE, REPAIR, RESTORE, RELIEVE - BRIDGING CLINICAL AND ENGINEERING SOLUTIONS IN NEUROREHABILITATION | 2014年 / 7卷
关键词
RECURRENT NEURAL-NETWORK; FATIGUE; MUSCLE;
D O I
10.1007/978-3-319-08072-7_76
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Functional electrical stimulation (FES) is a useful rehabilitation technique for restoring motor capability of spinal cord injured (SCI) patients by artificially driving muscle contractions. Real-time FES systems with online modulation ability are in great need for clinical applications. In this work, a system for real-time estimation of joint torque with evoked electromyography (eEMG) is presented. Kalman filter (KF) is adopted and embedded into the system as the online torque estimator. The real-time estimation system would be promising toward FES control with consideration of torque changes caused by muscle fatigue.
引用
收藏
页码:513 / 520
页数:8
相关论文
共 50 条
[41]   Real-time monitoring of thermal cycling damage in ceramic matrix composites under a constant stress [J].
Mei, Hui ;
Cheng, Laifei ;
Zhang, Litong ;
Fang, Peng ;
Meng, Zhixin ;
Liu, Chidong .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2007, 90 (07) :2135-2142
[42]   Real-time Detection and Analysis of Damage in High-performance Concrete under Cyclic Bending [J].
Guo, L. -P. ;
Sun, W. ;
Carpinteri, A. ;
Chen, B. ;
He, X. -Y. .
EXPERIMENTAL MECHANICS, 2010, 50 (03) :413-428
[43]   Feasibility of Human Wrist-joint Neuromuscular System Identification Method Using Functional Electrical Stimulation in Clinical Examinations [J].
Suzuli, Yuya ;
Matsui, Kazuhiro ;
Atsuumi, Keita ;
Taniguchi, Kazuhiro ;
Hirai, Hiroaki ;
Nishilawa, Atsushi .
ADVANCED BIOMEDICAL ENGINEERING, 2024, 13 :205-213
[44]   Smart Fatigue Phone: Real-time estimation of driver fatigue using smartphone-based cortisol detection [J].
Shin, Joonchul ;
Kim, Soocheol ;
Yoon, Taehee ;
Joo, Chulmin ;
Jung, Hyo-Il .
BIOSENSORS & BIOELECTRONICS, 2019, 136 :106-111
[45]   The analysis of Iris image acquisition and real-time detection system using convolutional neural network [J].
Yanru Liu ;
Jiali Xu ;
Austin Lin Yee .
The Journal of Supercomputing, 2024, 80 (4) :4500-4532
[46]   A thermal emissions-based real-time monitoring system for in situ detection of fatigue cracks [J].
Amjad, K. ;
Lambert, P. ;
Middleton, C. A. ;
Greene, R. J. ;
Patterson, E. A. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2266)
[47]   Design and Validation of Multichannel Wireless Wearable SEMG System for Real-Time Training Performance Monitoring [J].
Orucu, Serkan ;
Selek, Murat .
JOURNAL OF HEALTHCARE ENGINEERING, 2019, 2019
[48]   A Real-Time Muscle Fatigue Detection System Based on Multifrequency EIM and sEMG for Effective NMES [J].
Fernandez Schrunder, Alejandro D. ;
Huang, Yu-Kai ;
Rodriguez, Saul ;
Rusu, Ana .
IEEE SENSORS JOURNAL, 2024, 24 (14) :22553-22564
[49]   Development of a real-time spalling measurement system for ball-type constant velocity joints [J].
Song, Jun ;
Kim, Dong Hyuk ;
Kim, Seong Han .
MEASUREMENT, 2021, 186
[50]   The analysis of Iris image acquisition and real-time detection system using convolutional neural network [J].
Liu, Yanru ;
Xu, Jiali ;
Yee, Austin Lin .
JOURNAL OF SUPERCOMPUTING, 2024, 80 (04) :4500-4532