A fast incremental map segmentation algorithm based on spectral clustering and quadtree

被引:9
|
作者
Tian, Yafu [1 ]
Wang, Ke [1 ]
Li, Ruifeng [1 ]
Zhao, Lijun [1 ]
机构
[1] Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150080, Heilongjiang, Peoples R China
关键词
Autonomous map segmentation; quadtree; spectral clustering;
D O I
10.1177/1687814018761296
中图分类号
O414.1 [热力学];
学科分类号
摘要
Currently, state-of-the-art simultaneous localization and mapping methods are capable of generating large-scale and dense environmental maps. One primary reason may be the applications of map partitioning strategies. An efficient map partitioning method will decrease the time complexity of simultaneous localization and mapping algorithm and, more importantly, will make robots understand a place anthropomorphically. In this article, we propose a novel map segmentation algorithm based on quadtree and spectral clustering. The map is first organized hierarchically using quadtree, and then a user-friendly criterion is utilized to construct the corresponding Laplacian matrix for quadtree so that spectral clustering can be solved efficiently based on the sparse property of the matrix. In this article, we go further to provide a real-time, incremental, parallel algorithm that can be implemented on multi-core CPU/GPU to enhance the performance of the proposed basic algorithm. Our algorithms are verified under multiple environments including both simulation and real-world data, and the results reveal that the algorithm can provide a correct and user-friendly segmentation result in a short runtime.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Hyperspectral Fast Spectral Clustering Algorithm Based on Multi-Layer Bipartite Graph
    Li Siyuan
    Zheng Zhiyuan
    Du Xiaoyan
    Liu Tong
    Yang Xiaojun
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (12)
  • [22] Incremental Spectral Clustering via Fastfood Features and Its Application to Stream Image Segmentation
    He, Li
    Li, Yi
    Zhang, Xiang
    Chen, Chuangbin
    Zhu, Lei
    Leng, Chengcai
    SYMMETRY-BASEL, 2018, 10 (07):
  • [24] A Quadtree Density Clustering Algorithm Under Differential Privacy
    Chen, Hongyu
    Li, Shuyu
    PROCEEDINGS OF 2019 IEEE 13TH INTERNATIONAL CONFERENCE ON ANTI-COUNTERFEITING, SECURITY, AND IDENTIFICATION (IEEE-ASID'2019), 2019, : 65 - 69
  • [25] Segmentation of Mammography Images Based on Spectral Clustering Method
    Liu, Silin
    Wang, Ying
    2018 11TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2018), 2018,
  • [26] Error Based Nystrom Spectral Clustering Image Segmentation
    Liu Zhongmin
    Li Bohao
    Li Zhanming
    Hu Wenjin
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2016, PT II, 2016, 9772 : 546 - 556
  • [27] Spectral clustering image segmentation based on sparse matrix
    Liu Z.-M.
    Li Z.-M.
    Li B.-H.
    Hu W.-J.
    Li, Zhan-Ming (liuzm@lut.edu.cn), 1600, Editorial Board of Jilin University (47): : 1308 - 1313
  • [28] Image segmentation based on improved SLIC and spectral clustering
    Cheng, Xuezhen
    Liu, Xingjun
    Dong, Xiuwu
    Zhao, Meng
    Yin, Changchang
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 3058 - 3062
  • [29] A spectral clustering algorithm based on attribute fluctuation and density peaks clustering algorithm
    Song, Xin
    Li, Shuhua
    Qi, Ziqiang
    Zhu, Jianlin
    APPLIED INTELLIGENCE, 2023, 53 (09) : 10520 - 10534
  • [30] A spectral clustering algorithm based on attribute fluctuation and density peaks clustering algorithm
    Xin Song
    Shuhua Li
    Ziqiang Qi
    Jianlin Zhu
    Applied Intelligence, 2023, 53 : 10520 - 10534