Trion Emission Dominates the Low-Temperature Photoluminescence of CdSe Nanoplatelets

被引:38
作者
Antolinez, Felipe, V [1 ]
Rabouw, Freddy T. [1 ]
Rossinelli, Aurelio A. [1 ]
Keitel, Robert C. [1 ]
Cocina, Ario [1 ]
Becker, Michael A. [1 ,2 ]
Norris, David J. [1 ]
机构
[1] Swiss Fed Inst Technol, Opt Mat Engn Lab, Dept Mech & Proc Engn, CH-8092 Zurich, Switzerland
[2] IBM Res Europe Zurich, CH-8803 Ruschlikon, Switzerland
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
CdSe nanoplatelets; trion emission; Auger recombination; low temperature; shakeup line; weak confinement; SEMICONDUCTOR NANOCRYSTALS; AUGER PROCESSES; RECOMBINATION; LUMINESCENCE; EXCITONS; SHAKEUP; GAP;
D O I
10.1021/acs.nanolett.0c01707
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Colloidal nanoplatelets (NPLs) are atomically flat, quasi-two-dimensional particles of a semiconductor. Despite intense interest in their optical properties, several observations concerning the emission of CdSe NPLs remain puzzling. While their ensemble photoluminescence spectrum consists of a single narrow peak at room temperature, two distinct emission features appear at temperatures below similar to 160 K. Several competing explanations for the origin of this two-color emission have been proposed. Here, we present temperature- and time-dependent experiments demonstrating that the two emission colors are due to two subpopulations of uncharged and charged NPLs. We study dilute films of isolated NPLs, thus excluding any explanation relying on collective effects due to NPL stacking. Temperature-dependent measurements explain that trion emission from charged NPLs is bright at cryogenic temperatures, while temperature activation of nonradiative Auger recombination quenches the trion emission above 160 K. Our findings clarify many of the questions surrounding the photoluminescence of CdSe NPLs.
引用
收藏
页码:5814 / 5820
页数:7
相关论文
共 38 条
[1]  
Abakumov VN, 1991, Nonradiative Recombination in Semiconductors
[2]   p-State Luminescence in CdSe Nanoplatelets: Role of Lateral Confinement and a Longitudinal Optical Phonon Bottleneck [J].
Achtstein, Alexander W. ;
Scott, Riccardo ;
Kickhoefel, Sebastian ;
Jagsch, Stefan T. ;
Christodoulou, Sotirios ;
Bertrand, Guillaume H. V. ;
Prudnikau, Anatol V. ;
Antanovich, Artsiom ;
Artemyev, Mikhail ;
Moreels, Iwan ;
Schliwa, Andrei ;
Woggon, Ulrike .
PHYSICAL REVIEW LETTERS, 2016, 116 (11)
[3]   Temperature effects on the spectral properties of colloidal CdSe nanodots, nanorods, and tetrapods [J].
Al Salman, A. ;
Tortschanoff, A. ;
Mohamed, M. B. ;
Tonti, D. ;
van Mourik, F. ;
Chergui, M. .
APPLIED PHYSICS LETTERS, 2007, 90 (09)
[4]   Observation of Electron Shakeup in CdSe/CdS Core/Shell Nanoplatelets [J].
Antolinez, Felipe V. ;
Rabouw, Freddy T. ;
Rossinelli, Aurelio A. ;
Cui, Jian ;
Norris, David J. .
NANO LETTERS, 2019, 19 (12) :8495-8502
[5]   Recombination Dynamics of Band Edge Excitons in Quasi-Two-Dimensional CdSe Nanoplatelets [J].
Biadala, Louis ;
Liu, Feng ;
Tessier, Mickael D. ;
Yakovlev, Dmitri R. ;
Dubertret, Benoit ;
Bayer, Manfred .
NANO LETTERS, 2014, 14 (03) :1134-1139
[6]   Statistical aging and nonergodicity in the fluorescence of single nanocrystals [J].
Brokmann, X ;
Hermier, JP ;
Messin, G ;
Desbiolles, P ;
Bouchaud, JP ;
Dahan, M .
PHYSICAL REVIEW LETTERS, 2003, 90 (12) :4-120601
[7]   Quasi-2D Colloidal Semiconductor Nanoplatelets for Narrow Electroluminescence [J].
Chen, Zhuoying ;
Nadal, Brice ;
Mahler, Benoit ;
Aubin, Herve ;
Dubertret, Benoit .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (03) :295-302
[8]   Direct Synthesis of Six-Monolayer (1.9 nm) Thick Zinc-Blende CdSe Nanoplatelets Emitting at 585 nm [J].
Cho, Wooje ;
Kim, Siyoung ;
Coropceanu, Igor ;
Srivastava, Vishwas ;
Diroll, Benjamin T. ;
Hazarika, Abhijit ;
Fedin, Igor ;
Galli, Giulia ;
Schaller, Richard D. ;
Talapin, Dmitri, V .
CHEMISTRY OF MATERIALS, 2018, 30 (20) :6957-6960
[9]   Chloride-Induced Thickness Control in CdSe Nanoplatelets [J].
Christodoulou, Sotirios ;
Climente, Juan I. ;
Planelles, Josep ;
Brescia, Rosaria ;
Prato, Mirko ;
Martin-Garcia, Beatriz ;
Khan, Ali Hossain ;
Moreels, Iwan .
NANO LETTERS, 2018, 18 (10) :6248-6254
[10]   Relationship between single quantum-dot intermittency and fluorescence intensity decays from collections of dots [J].
Chung, IH ;
Bawendi, MG .
PHYSICAL REVIEW B, 2004, 70 (16) :1-5