Generalized theory for node disruption in finite-size complex networks

被引:7
|
作者
Mitra, Bivas [2 ]
Ganguly, Niloy [2 ]
Ghose, Sujoy [2 ]
Peruani, Fernando [1 ,3 ]
机构
[1] Ctr Etud Saclay, CEA, Serv Phys Etat Condense, F-91191 Gif Sur Yvette, France
[2] Indian Inst Technol, Dept Comp Sci & Engn, Kharagpur 721302, W Bengal, India
[3] Inst Syst Complexes Paris Ile de France, F-75005 Paris, France
关键词
D O I
10.1103/PhysRevE.78.026115
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
After a failure or attack the structure of a complex network changes due to node removal. Here, we show that the degree distribution of the distorted network, under any node disturbances, can be easily computed through a simple formula. Based on this expression, we derive a general condition for the stability of noncorrelated finite complex networks under any arbitrary attack. We apply this formalism to derive an expression for the percolation threshold f(c) under a general attack of the form f(k)similar to ky, where f(k) stands for the probability of a node of degree k of being removed during the attack. We show that f(c) of a finite network of size N exhibits an additive correction which scales as N-1 with respect to the classical result for infinite networks.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Finite-size scaling in complex networks
    Hong, Hyunsuk
    Ha, Meesoon
    Park, Hyunggyu
    PHYSICAL REVIEW LETTERS, 2007, 98 (25)
  • [2] Finite-size scaling of synchronized oscillation on complex networks
    Hong, Hyunsuk
    Park, Hyunggyu
    Tang, Lei-Han
    PHYSICAL REVIEW E, 2007, 76 (06)
  • [3] Finite-size scaling of geometric renormalization flows in complex networks
    Chen, Dan
    Su, Housheng
    Wang, Xiaofan
    Pan, Gui-Jun
    Chen, Guanrong
    PHYSICAL REVIEW E, 2021, 104 (03)
  • [4] Finite-size transitions in complex membranes
    Girard, Martin
    Bereau, Tristan
    BIOPHYSICAL JOURNAL, 2021, 120 (12) : 2436 - 2443
  • [5] Finite-size anyons and perturbation theory
    Phys Rev D, 10 (6537):
  • [6] Finite-size anyons and perturbation theory
    Mashkevich, S
    PHYSICAL REVIEW D, 1996, 54 (10): : 6537 - 6543
  • [7] Finite-size effects for percolation on Apollonian networks
    Auto, Daniel M.
    Moreira, Andre A.
    Herrmann, Hans J.
    Andrade, Jose S., Jr.
    PHYSICAL REVIEW E, 2008, 78 (06)
  • [8] VERIFICATION OF THEORY FOR PLASMA OF FINITE-SIZE PARTICLES
    OKUDA, H
    PHYSICS OF FLUIDS, 1972, 15 (07) : 1268 - &
  • [9] Finite-size scaling and effective Lagrangian theory
    Hamer, CJ
    AUSTRALIAN JOURNAL OF PHYSICS, 1997, 50 (06): : 1051 - 1060
  • [10] Finite-size correlation length and violations of finite-size scaling
    Caracciolo, S
    Gambassi, A
    Gubinelli, M
    Pelissetto, A
    EUROPEAN PHYSICAL JOURNAL B, 2001, 20 (02): : 255 - 265