Recommender System Based on Collaborative Filtering for Personalized Dietary Advice: A Cross-Sectional Analysis of the ELSA-Brasil Study

被引:4
|
作者
Silva, Vanderlei Carneiro [1 ,2 ]
Gorgulho, Bartira [3 ]
Marchioni, Dirce Maria [4 ]
Alvim, Sheila Maria [5 ]
Giatti, Luana [6 ]
de Araujo, Tania Aparecida [1 ]
Alonso, Angelica Castilho [7 ]
Santos, Itamar de Souza [2 ]
Lotufo, Paulo Andrade [2 ]
Bensenor, Isabela Martins [2 ]
机构
[1] Univ Sao Paulo, Sch Publ Hlth, Dept Epidemiol, BR-01246904 Sao Paulo, Brazil
[2] Univ Sao Paulo, Univ Hosp, Ctr Clin & Epidemiol Res, BR-05508000 Sao Paulo, Brazil
[3] Univ Fed Mato Grosso, Sch Nutr, Dept Food & Nutr, BR-78060900 Cuiaba, Brazil
[4] Univ Sao Paulo, Sch Publ Hlth, Dept Nutr, BR-01246904 Sao Paulo, Brazil
[5] Univ Fed Bahia, Inst Collect Hlth, BR-40110040 Salvador, BA, Brazil
[6] Univ Fed Minas Gerais, Fac Med & Clin Hosp, Dept Social & Prevent Med, BR-30130100 Belo Horizonte, MG, Brazil
[7] Univ Sao Paulo, Fac Med, Lab Study Movement, BR-05403010 Sao Paulo, Brazil
关键词
recommender system; collaborative filtering; diet; dietary advice; algorithms; NUTRITION; PREVENTION; DISEASE;
D O I
10.3390/ijerph192214934
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study aimed to predict dietary recommendations and compare the performance of algorithms based on collaborative filtering for making predictions of personalized dietary recommendations. We analyzed the baseline cross-sectional data (2008-2010) of 12,667 participants of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). The participants were public employees of teaching and research institutions, aged 35-74 years, and 59% female. A semiquantitative Food Frequency Questionnaire (FFQ) was used for dietary assessment. The predictions of dietary recommendations were based on two machine learning (ML) algorithms-user-based collaborative filtering (UBCF) and item-based collaborative filtering (IBCF). The ML algorithms had similar precision (88-91%). The error metrics were lower for UBCF than for IBCF: with a root mean square error (RMSE) of 1.49 vs. 1.67 and a mean square error (MSE) of 2.21 vs. 2.78. Although all food groups were used as input in the system, the items eligible as recommendations included whole cereals, tubers and roots, beans and other legumes, oilseeds, fruits, vegetables, white meats and fish, and low-fat dairy products and milk. The algorithms' performances were similar in making predictions for dietary recommendations. The models presented can provide support for health professionals in interventions that promote healthier habits and improve adherence to this personalized dietary advice.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Dietary Selenium Intake and Subclinical Hypothyroidism: A Cross-Sectional Analysis of the ELSA-Brasil Study
    Andrade, Gustavo R. G.
    Gorgulho, Bartira
    Lotufo, Paulo A.
    Bensenor, Isabela M.
    Marchioni, Dirce M.
    NUTRIENTS, 2018, 10 (06)
  • [2] Phytosterol consumption and markers of subclinical atherosclerosis: Cross-sectional results from ELSA-Brasil
    Pereira, Tuany S.
    Fonseca, Francisco A. H.
    Fonseca, Marilia I. H.
    Martins, Celma M.
    Fonseca, Henrique A. R.
    Fonzar, Waleria T.
    Goulart, Alessandra C.
    Bensenor, Isabela M.
    Lotufo, Paulo A.
    Izar, Maria Cristina
    NUTRITION METABOLISM AND CARDIOVASCULAR DISEASES, 2021, 31 (06) : 1756 - 1766
  • [3] Cardiovascular Health and Atrial Fibrillation or Flutter: A Cross-Sectional Study from ELSA-Brasil
    Santos, Itamar S.
    Lotufo, Paulo A.
    Goulart, Alessandra C.
    Brant, Luisa C. C.
    Pinto Filho, Marcelo M.
    Pereira, Alexandre C.
    Barreto, Sandhi M.
    Ribeiro, Antonio L. P.
    Thomas, G. Neil
    Lip, Gregory Y. H.
    Bensenor, Isabela M.
    ARQUIVOS BRASILEIROS DE CARDIOLOGIA, 2022, 119 (05) : 724 - 731
  • [4] The association between the neighbourhood social environment and obesity in Brazil: a cross-sectional analysis of the ELSA-Brasil study
    Chaparro, M. Pia
    Pina, Maria Fatima
    de Oliveira Cardoso, Leticia
    Santos, Simone M.
    Barreto, Sandhi M.
    Giatti Goncalves, Luana
    Alvim de Matos, Sheila M.
    Mendes da Fonseca, Maria de Jesus
    Chor, Dora
    Griep, Rosane Haerter
    BMJ OPEN, 2019, 9 (09):
  • [5] Life Satisfaction and Ideal Cardiovascular Health Score: A Cross-Sectional Study From ELSA-Brasil
    Santos, Aline E.
    Camelo, Lidyane V.
    Santos, Itamar S.
    Griep, Rosane H.
    Bensenor, Isabela J.
    Barreto, Sandhi M.
    Giatti, Luana
    HEALTH PSYCHOLOGY, 2024, 43 (02) : 114 - 124
  • [6] Biomarkers of Fruit Intake Using a Targeted Metabolomics Approach: an Observational Cross-Sectional Analysis of the ELSA-Brasil Study
    Levy, Jessica
    Silva, Alexsandro Macedo
    De Carli, Eduardo
    Cacau, Leandro Teixeira
    de Alvarenga, Jose Fernando Rinaldi
    Fiamoncini, Jarlei
    Bensenor, Isabela Martins
    Lotufo, Paulo Andrade
    Marchioni, Dirce Maria
    JOURNAL OF NUTRITION, 2022, 152 (09) : 2023 - 2030
  • [7] Association between dietary patterns and renal function in a cross-sectional study using baseline data from the ELSA-Brasil cohort
    Silva Junior, G. B.
    Fraser, S. D. S.
    Neri, A. K. M.
    Xavier, R. M. F.
    Mota, R. M. S.
    Lopes, A. A.
    Mill, J. G.
    Barreto, S. M.
    Luft, V. C.
    Chor, D.
    Santos, C. A. S. T.
    Lotufo, P. A.
    Matos, S. M. A.
    BRAZILIAN JOURNAL OF MEDICAL AND BIOLOGICAL RESEARCH, 2020, 53 (12)
  • [8] PERSONALIZED RECOMMENDER SYSTEM USING ENTROPY BASED COLLABORATIVE FILTERING TECHNIQUE
    Chandrashekhar, Hemalatha
    Bhasker, Bharat
    JOURNAL OF ELECTRONIC COMMERCE RESEARCH, 2011, 12 (03): : 214 - 237
  • [9] Association between objective sleep measures and cognitive performance: a cross-sectional analysis in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) study
    Suemoto, Claudia K.
    Santos, Ronaldo B.
    Giatti, Soraya
    Aielo, Aline N.
    Silva, Wagner A.
    Parise, Barbara K.
    Cunha, Lorenna F.
    Souza, Silvana P.
    Griep, Rosane H.
    Brunoni, Andre R.
    Lotufo, Paulo A.
    Bensenor, Isabela M.
    Drager, Luciano F.
    JOURNAL OF SLEEP RESEARCH, 2023, 32 (02)
  • [10] Reference range of serum uric acid and prevalence of hyperuricemia: a cross-sectional study from baseline data of ELSA-Brasil cohort
    Dorio, Murillo
    Bensenor, Isabela M.
    Lotufo, Paulo
    Santos, Itamar S.
    Fuller, Ricardo
    ADVANCES IN RHEUMATOLOGY, 2022, 62 (01)