Metabolic engineering of Escherichia coli for optimized biosynthesis of nicotinamide mononucleotide, a noncanonical redox cofactor

被引:56
作者
Black, William B. [1 ,2 ]
Aspacio, Derek [1 ,2 ]
Bever, Danielle [1 ,2 ]
King, Edward [3 ]
Zhang, Linyue [1 ,2 ]
Li, Han [1 ,2 ]
机构
[1] Univ Calif Irvine, Dept Chem, Irvine, CA 92717 USA
[2] Univ Calif Irvine, Dept Biomol Engn, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Mol Biol & Biochem, Irvine, CA USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Nicotinamide mononucleotide; Noncanonical redox cofactor; Escherichia coli; Metabolic engineering; NAD(+)biosynthesis; Biomimetic cofactor; BIOMIMETIC COFACTORS; NAD METABOLISM; ANALOGS; RIBOSIDE; ADENYLYLTRANSFERASE; DEHYDROGENASE; SYSTEM; ENZYME; GENE;
D O I
10.1186/s12934-020-01415-z
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background Noncanonical redox cofactors are emerging as important tools in cell-free biosynthesis to increase the economic viability, to enable exquisite control, and to expand the range of chemistries accessible. However, these noncanonical redox cofactors need to be biologically synthesized to achieve full integration with renewable biomanufacturing processes. Results In this work, we engineeredEscherichia colicells to biosynthesize the noncanonical cofactor nicotinamide mononucleotide (NMN+), which has been efficiently used in cell-free biosynthesis. First, we developed a growth-based screening platform to identify effective NMN(+)biosynthetic pathways inE. coli. Second, we explored various pathway combinations and host gene disruption to achieve an intracellular level of similar to 1.5 mM NMN+, a 130-fold increase over the cell's basal level, in the best strain, which features a previously uncharacterized nicotinamide phosphoribosyltransferase (NadV) fromRalstonia solanacearum.Last, we revealed mechanisms through which NMN(+)accumulation impactsE. colicell fitness, which sheds light on future work aiming to improve the production of this noncanonical redox cofactor. Conclusion These results further the understanding of effective production and integration of NMN(+)intoE. coli. This may enable the implementation of NMN+-directed biocatalysis without the need for exogenous cofactor supply.
引用
收藏
页数:10
相关论文
共 39 条
[1]   Nicotinamide Riboside and Nicotinic Acid Riboside Salvage in Fungi and Mammals QUANTITATIVE BASIS FOR Urh1 AND PURINE NUCLEOSIDE PHOSPHORYLASE FUNCTION IN NAD+ METABOLISM [J].
Belenky, Peter ;
Christensen, Kathryn C. ;
Gazzaniga, Francesca ;
Pletnev, Alexandre A. ;
Brenner, Charles .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (01) :158-164
[2]   Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis [J].
Black, William B. ;
Zhang, Linyue ;
Mak, Wai Shun ;
Maxel, Sarah ;
Cui, Youtian ;
King, Edward ;
Fong, Bonnie ;
Martinez, Alicia Sanchez ;
Siegel, Justin B. ;
Li, Han .
NATURE CHEMICAL BIOLOGY, 2020, 16 (01) :87-+
[3]  
Bowie JU, 2020, TRENDS BIOTECHNOL
[4]   Enzymatic biofuel cells utilizing a biomimetic cofactor [J].
Campbell, Elliot ;
Meredith, Matthew ;
Minteer, Shelley D. ;
Banta, Scott .
CHEMICAL COMMUNICATIONS, 2012, 48 (13) :1898-1900
[5]   Cell-free metabolic engineering: Biomanufacturing beyond the cell [J].
Dudley, Quentin M. ;
Karim, Ashty S. ;
Jewett, Michael C. .
BIOTECHNOLOGY JOURNAL, 2015, 10 (01) :69-82
[6]   The role of the invariant glutamate 95 in the catalytic site of Complex I from Escherichia coli [J].
Euro, Liliya ;
Belevich, Galina ;
Bloch, Dmitry A. ;
Verkhovsky, Michael I. ;
Wikstrom, Marten ;
Verkhovskaya, Marina .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2009, 1787 (01) :68-73
[7]  
Evans Charles, 2010, BMC Chemical Biology, V10, P2, DOI 10.1186/1472-6769-10-2
[8]   Determination of the intracellular concentration of the export chaperone SecB in Escherichia coli [J].
Findik, Bahar T. ;
Randall, Linda L. .
PLOS ONE, 2017, 12 (08)
[9]   Microbial NAD Metabolism: Lessons from Comparative Genomics [J].
Gazzaniga, Francesca ;
Stebbins, Rebecca ;
Chang, Sheila Z. ;
McPeek, Mark A. ;
Brenner, Charles .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2009, 73 (03) :529-+
[10]  
Gibson DG, 2009, NAT METHODS, V6, P343, DOI [10.1038/NMETH.1318, 10.1038/nmeth.1318]