Photocurrent spectroscopy of site-controlled pyramidal quantum dots

被引:3
|
作者
Mohan, A. [1 ]
Nevou, L. [1 ]
Gallo, P. [2 ]
Dwir, B. [2 ]
Rudra, A. [2 ]
Kapon, E. [2 ]
Faist, J. [1 ]
机构
[1] ETH, Inst Quantum Elect, CH-8093 Zurich, Switzerland
[2] Ecole Polytech Fed Lausanne, Lab Phys Nanostruct, CH-1015 Lausanne, Switzerland
关键词
INFRARED PHOTODETECTORS; ABSORPTION; DETECTORS; LAYER;
D O I
10.1063/1.4737426
中图分类号
O59 [应用物理学];
学科分类号
摘要
Intraband photocurrent spectroscopy of site-controlled pyramidal quantum dots by inserting them into the intrinsic region of n-i-n like quantum dot infrared photodetector structure is reported. The photovoltaic response is observed in the mid-infrared region. A peak responsivity of 0.4 mA/W at 120meV (lambda = 10 mu m) is observed at 10K at -2 V bias. The ability to engineer states in the conduction band of the QDs has been exploited to tune their photocurrent response from 10 mu m to 18 mu m with a narrow spectral width of Delta lambda/lambda = 0.17. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4737426]
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Observation of quantum-confined exciton states in monolayer WS2 quantum dots by ultrafast spectroscopy
    Zheng, Shu-Wen
    Wang, Lei
    Wang, Hai-Yu
    Xu, Chen-Yu
    Luo, Yang
    Sun, Hong-Bo
    NANOSCALE, 2021, 13 (40) : 17093 - 17100
  • [32] Polarization-dependent photocurrent enhancement, Cross Mark in metamaterial-coupled quantum dots-in-a-well infrared detectors
    Sharma, Yagya D.
    Jun, Young Chul
    Kim, Jun Oh
    Brener, Igal
    Krishna, Sanjay
    OPTICS COMMUNICATIONS, 2014, 312 : 31 - 34
  • [33] Plasmonic-Layered InAs/InGaAs Quantum-Dots-in-a-Well Pixel Detector for Spectral-Shaping and Photocurrent Enhancement
    Hwang, Jehwan
    Ku, Zahyun
    Jeon, Jiyeon
    Kim, Yeongho
    Kim, Jun Oh
    Kim, Deok-Kee
    Urbas, Augustine
    Kim, Eun Kyu
    Lee, Sang Jun
    NANOMATERIALS, 2020, 10 (09) : 1 - 14
  • [34] An experimental setup for room temperature waveguide spectroscopy of self-assembled quantum dots
    Visimberga, G.
    De Giorgi, M.
    Passaseo, A.
    De Vittorio, M.
    JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2006, 8 (07): : S514 - S517
  • [35] Quantum size effect and surface defect passivation in size-controlled CsPbBr3 quantum dots
    Xu, Fan
    Kong, Xiaobo
    Wang, Wenzhi
    Juan, Fangying
    Wang, Mingxu
    Wei, Haoming
    Li, Jinkai
    Cao, Bingqiang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 831
  • [36] Silver Nanoshell Plasmonically Controlled Emission of Semiconductor Quantum Dots in the Strong Coupling Regime
    Zhou, Ning
    Yuan, Meng
    Gao, Yuhan
    Li, Dongsheng
    Yang, Deren
    ACS NANO, 2016, 10 (04) : 4154 - 4163
  • [37] Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states
    Leistikow, M. D.
    Johansen, J.
    Kettelarij, A. J.
    Lodahl, P.
    Vos, W. L.
    PHYSICAL REVIEW B, 2009, 79 (04):
  • [38] Photo-current spectroscopy of modulation doped InAs self-assembled quantum dots
    Hawrylak, R
    Korkusinski, M
    Fafard, S
    Dudek, R
    Liu, HC
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 13 (2-4): : 246 - 250
  • [39] Intersublevel Spectroscopy on Single InAs-Quantum Dots by Terahertz Near-Field Microscopy
    Jacob, Rainer
    Winnerl, Stephan
    Fehrenbacher, Markus
    Bhattacharyya, Jayeeta
    Schneider, Harald
    Wnezel, Marc Tobias
    von Ribbeck, Hans-Georg
    Eng, Lukas M.
    Atkinson, Paola
    Schmidt, Oliver G.
    Helm, Manfred
    NANO LETTERS, 2012, 12 (08) : 4336 - 4340
  • [40] Size-Dependent Energy Levels of InSb Quantum Dots Measured by Scanning Tunneling Spectroscopy
    Wang, Tuo
    Vaxenburg, Roman
    Liu, Wenyong
    Rupich, Sara M.
    Lifshitz, Efrat
    Efros, Alexander L.
    Talapin, Dmitri V.
    Sibener, S. J.
    ACS NANO, 2015, 9 (01) : 725 - 732