Existence of symmetric solutions for singular semilinear elliptic systems with critical Hardy-Sobolev exponents

被引:15
作者
Deng, Zhiying [1 ]
Huang, Yisheng [2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Math & Phys, Chongqing 400065, Peoples R China
[2] Soochow Univ, Dept Math, Suzhou 215006, Jiangsu, Peoples R China
关键词
G-symmetric solution; Symmetric criticality principle; Critical Hardy-Sobolev exponent; Singular semilinear elliptic system; KOHN-NIRENBERG TYPE; POSITIVE SOLUTIONS; MULTIPLE SOLUTIONS; EQUATIONS; POTENTIALS; INEQUALITIES; WEIGHTS;
D O I
10.1016/j.nonrwa.2012.07.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the singular semilinear elliptic system -Delta u = mu u/vertical bar x vertical bar(2) + 2 alpha Q(x)/(alpha + beta) vertical bar x vertical bar(s) vertical bar u vertical bar(alpha-2)u vertical bar v vertical bar beta + lambda vertical bar u vertical bar(q-2)u in Omega, -Delta v = mu v/vertical bar x vertical bar(2) + 2 beta Q(x)/(alpha + beta)vertical bar x vertical bar(s) vertical bar u vertical bar(alpha)vertical bar v vertical bar(beta-2)v+delta vertical bar v vertical bar(q-2)v in Omega, u = v = 0 on partial derivative Omega, where Omega subset of R-N (N >= 3) is a smooth bounded domain, 0 epsilon Omega and Omega is G-symmetric with respect to a subgroup G of O(N), 0 <= mu < <(mu)over bar> with (mu) over bar = (N-2/2)(2), lambda, delta >= 0, 0 <= s < 2 and alpha, beta > 1 satisfy alpha + beta = 2*(s) = 2(N-s)/N-2, 2 < q < 2* = 2N/N-2, Q(x) is continuous and G-symmetric on (Omega) over bar. Based upon the symmetric criticality principle of Palais and variational methods, we obtain several existence results of G-symmetric solutions under certain appropriate hypotheses on Q, q and the pair of parameters (lambda, delta) epsilon R-2. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:613 / 625
页数:13
相关论文
共 40 条
[1]   Some results for semilinear elliptic equations with critical potential [J].
Abdellaoui, B ;
Peral, I .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2002, 132 :1-24
[2]   On systems of elliptic equations involving subcritical or critical Sobolev exponents [J].
Alves, CO ;
de Morais, DC ;
Souto, MAS .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (05) :771-787
[3]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[4]  
Azorero JPG, 1998, J DIFFER EQUATIONS, V144, P441
[5]  
Bartsch T., 1992, INFINITELY MANY NONR
[6]   ON SYMMETRICAL SOLUTIONS OF AN ELLIPTIC EQUATION WITH A NONLINEARITY INVOLVING CRITICAL SOBOLEV EXPONENT [J].
BIANCHI, G ;
CHABROWSKI, J ;
SZULKIN, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 25 (01) :41-59
[7]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[8]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[9]  
CAFFARELLI L, 1984, COMPOS MATH, V53, P259
[10]  
CHABROWSKI J, 1992, REND CIRC MAT PALERM, V41, P413