Synthesis and characterization of a new perylene bisimide (PBI) derivative and its application as electron acceptor for bulk heterojunction polymer solar cells

被引:34
作者
Sharma, G. D. [1 ]
Roy, M. S. [3 ]
Mikroyannidis, J. A. [2 ]
Thomas, K. R. Justin [4 ]
机构
[1] Jaipur Engn Coll, R&D Ctr Sci & Engn, Jaipur 303001, Rajasthan, India
[2] Univ Patras, Dept Chem, Chem Technol Lab, GR-26500 Patras, Greece
[3] Def Lab, Jodhpur 342011, Rajasthan, India
[4] Indian Inst Technol, Dept Chem, Mat Organ Lab, Roorkee 247667, Uttar Pradesh, India
关键词
Polymer solar cells; Bulk heterojunction; Perylene bisimide derivative; Power conversion efficiency; Solvent additive effect; INTERPENETRATING NETWORK; EFFICIENCY; CHARGE; MORPHOLOGY; CONVERSION; PERFORMANCE; COPOLYMERS;
D O I
10.1016/j.orgel.2012.07.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A symmetrical perylene bisimide derivative (PBI) with 2-(4-nitrophenyl)acrylonitrile groups at the 1,7 bay positions of perylene and solubilizing cyclohexyl units was synthesized and characterized. The absorption spectrum of PBI was broad with the most prominent peak at 655 nm and optical band gap of 1.72 eV. The electrochemical investigation indicates that PBI has a LUMO energy level of -3.9 eV which is similar to that of PCBM or PC70BM. Bulk heterojunction solar cell fabricated using a blend of poly(3-hexylthiophene) (P3HT) and PBI (1:1 w/w) as active layer cast from THF exhibited power conversion efficiency (PCE) at 1.56%. However, the device with P3HT:PBI blend deposited from mixed solvent (DIO/THF) improved the PCE to 2.78% which further increased to 3.17% on using the thermal annealed active layer. The improvement in the PCE is attributed to the enhanced crystallinity of the blend (particularly P3HT) and increase in hole mobility leading to balanced charge transport. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:3118 / 3129
页数:12
相关论文
共 89 条
  • [1] Small-Molecule, Nonfullerene Acceptors for Polymer Bulk Heterojunction Organic Photovoltaics
    Anthony, John E.
    [J]. CHEMISTRY OF MATERIALS, 2011, 23 (03) : 583 - 590
  • [2] DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE
    BECKE, AD
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) : 5648 - 5652
  • [3] Device physics of polymer:fullerene bulk heterojunction solar cells
    Blom, Paul W. M.
    Mihailetchi, Valentin D.
    Koster, L. Jan Anton
    Markov, Denis E.
    [J]. ADVANCED MATERIALS, 2007, 19 (12) : 1551 - 1566
  • [4] Processable Low-Bandgap Polymers for Photovoltaic Applications
    Boudreault, Pierre-Luc T.
    Najari, Ahmed
    Leclerc, Mario
    [J]. CHEMISTRY OF MATERIALS, 2011, 23 (03) : 456 - 469
  • [5] Polycarbazoles for plastic electronics
    Boudreault, Pierre-Luc T.
    Beaupre, Serge
    Leclerc, Mario
    [J]. POLYMER CHEMISTRY, 2010, 1 (02) : 127 - 136
  • [6] Brabec CJ, 2001, ADV FUNCT MATER, V11, P15, DOI 10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO
  • [7] 2-A
  • [8] Brunetti F., 2010, ANGEW CHEM INT EDIT, V20, P3626
  • [9] Effect of Trace Solvent on the Morphology of P3HT:PCBM Bulk Heterojunction Solar Cells
    Chang, Lilian
    Lademann, Hans W. A.
    Bonekamp, Joerg-Bernd
    Meerholz, Klaus
    Moule, Adam J.
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (10) : 1779 - 1787
  • [10] P3HT/PCBM Bulk Heterojunction Organic Photovoltaics: Correlating Efficiency and Morphology
    Chen, Dian
    Nakahara, Atsuhiro
    Wei, Dongguang
    Nordlund, Dennis
    Russell, Thomas P.
    [J]. NANO LETTERS, 2011, 11 (02) : 561 - 567