Role of Arabidopsis RAP2.4 in regulating light- and ethylene-mediated developmental processes and drought stress tolerance

被引:150
作者
Lin, Rong-Cheng [1 ]
Park, Hee-Jin [1 ]
Wang, Hai-Yang [1 ]
机构
[1] Cornell Univ, Boyce Thompson Inst Plant Res, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Arabidopsis; RAP2.4; transcription factor; light signaling; ethylene response; drought tolerance;
D O I
10.1093/mp/ssm004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Light and the plant hormone ethylene regulate many aspects of plant growth and development in an overlapping and interdependent fashion. Little is known regarding how their signal transduction pathways cross-talk to regulate plant development in a coordinated manner. Here, we report functional characterization of an AP2/DREB-type transcription factor, Arabidopsis RAP2.4, in mediating light and ethylene signaling. Expression of the RAP2.4 gene is down-regulated by light but up-regulated by salt and drought stresses. RAP2.4 protein is constitutively targeted to the nucleus and it can bind to both the ethylene-responsive GCC-box and the dehydration-responsive element (DRE). We show that RAP2.4 protein possesses an intrinsic transcriptional activation activity in yeast cells and that it can activate a reporter gene driven by the DRE cis-element in Arabidopsis protoplasts. Overexpression of RAP2.4 or mutation in RAP2.4 cause altered expression of representative light-, ethylene-, and drought-responsive genes. Although no salient phenotype was observed with a rap2.4 loss-of-function mutant, constitutive overexpression of RAP2.4 results in defects in multiple developmental processes regulated by light and ethylene, including hypocotyl elongation and gravitropism, apical hook formation and cotyledon expansion, flowering time, root elongation, root hair formation, and drought tolerance. Based on these observations, we propose that RAP2.4 acts at or downstream of a converging point of light and ethylene signaling pathways to coordinately regulate multiple developmental processes and stress responses.
引用
收藏
页码:42 / 57
页数:16
相关论文
共 92 条
[1]   The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis [J].
Aharoni, A ;
Dixit, S ;
Jetter, R ;
Thoenes, E ;
van Arkel, G ;
Pereira, A .
PLANT CELL, 2004, 16 (09) :2463-2480
[2]   A novel mode of DNA recognition by a β-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA [J].
Allen, MD ;
Yamasaki, K ;
Ohme-Takagi, M ;
Tateno, M ;
Suzuki, M .
EMBO JOURNAL, 1998, 17 (18) :5484-5496
[3]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[4]   LAF1, a MYB transcription activator for phytochrome A signaling [J].
Ballesteros, ML ;
Bolle, C ;
Lois, LM ;
Moore, JM ;
Vielle-Calzada, JP ;
Grossniklaus, U ;
Chua, NH .
GENES & DEVELOPMENT, 2001, 15 (19) :2613-2625
[5]  
Bolle C, 2000, GENE DEV, V14, P1269
[6]   Photoreceptors in plant photomorphogenesis to date. Five phytochromes, two cryptochromes, one phototropin, and one superchrome [J].
Briggs, WR ;
Olney, MA .
PLANT PHYSIOLOGY, 2001, 125 (01) :85-88
[7]   WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis [J].
Broun, P ;
Poindexter, P ;
Osborne, E ;
Jiang, CZ ;
Riechmann, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (13) :4706-4711
[8]   GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants [J].
Chen, Ming ;
Wang, Qiao-Yan ;
Cheng, Xian-Guo ;
Xu, Zhao-Shi ;
Li, an-Cheng Li ;
Ye, Xing-Guo ;
Xia, Lan-Qin ;
Ma, You-Zhi .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2007, 353 (02) :299-305
[9]   Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis [J].
Cheong, YH ;
Chang, HS ;
Gupta, R ;
Wang, X ;
Zhu, T ;
Luan, S .
PLANT PHYSIOLOGY, 2002, 129 (02) :661-677
[10]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743